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Introduction to the book

There’s a lot of excitement about Bitcoin and cryptocurrencies. Optimists claim that Bitcoin will
fundamentally alter payments, economics, and even politics around the world. Pessimists claim
Bitcoin is inherently broken and will suffer an inevitable and spectacular collapse.

Underlying these differing views is significant confusion about what Bitcoin is and how it works. We
wrote this book to help cut through the hype and get to the core of what makes Bitcoin unique.

To really understand what is special about Bitcoin, we need to understand how it works at a technical
level. Bitcoin truly is a new technology and we can only get so far by explaining it through simple
analogies to past technologies.

We’'ll assume that you have a basic understanding of computer science — how computers work, data
structures and algorithms, and some programming experience. If you’re an undergraduate or
graduate student of computer science, a software developer, an entrepreneur, or a technology
hobbyist, this textbook is for you.

In this book we’ll address the important questions about Bitcoin. How does Bitcoin work? What
makes it different? How secure are your bitcoins? How anonymous are Bitcoin users? What
applications can we build using Bitcoin as a platform? Can cryptocurrencies be regulated? If we were
designing a new cryptocurrency today, what would we change? What might the future hold?

Each chapter has a series of homework questions to help you understand these questions at a deeper
level. In addition, there is a series of programming assignments in which you’ll implement various
components of Bitcoin in simplified models. If you’re an auditory learner, most of the material of this
book is also available as a series of video lectures. You can find all these on our Coursera course. You
should also supplement your learning with information you can find online including the Bitcoin wiki,
forums, and research papers, and by interacting with your peers and the Bitcoin community.

After reading this book, you’ll know everything you need to be able to separate fact from fiction when
reading claims about Bitcoin and other cryptocurrencies. You'll have the conceptual foundations you
need to engineer secure software that interacts with the Bitcoin network. And you’ll be able to
integrate ideas from Bitcoin into your own projects.

A note of thanks

We're immensely grateful to the students who helped develop programming assignments and to
everyone who provided feedback on the drafts of this book. Princeton students Shivam Agarwal,
Miles Carlsten, Paul Ellenbogen, Pranav Gokhale, Alex Iriza, Harry Kalodner, and Dillon Reisman, and
Stanford students Allison Berke, Benedikt Blinz, and Alex Leishman deserve special praise. We're also
thankful to Dan Boneh and Albert Szmigielski.
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Preface — The Long Road to Bitcoin

The path to Bitcoin is littered with the corpses of failed attempts. I've compiled a list of about a
hundred cryptographic payment systems, both e-cash and credit card based technologies, that are
notable in some way. Some are academic proposals that have been well cited while others are actual
systems that were deployed and tested. Of all the names on this list, there’s probably only one that
you recognize — PayPal. And PayPal survived only because it quickly pivoted away from its original
idea of cryptographic payments on hand-held devices!

There’s a lot to learn from this history. Where do the ideas in Bitcoin come from? Why do some
technologies survive while many others die? What does it take for complex technical innovations to
be successfully commercialized? If nothing else, this story will give you an appreciation of how
remarkable it is that we finally have a real, working payment mechanism that’s native to the Internet.
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Table 1: Notable electronic payment systems and proposals
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Traditional financial arrangements

Back in time before there were governments, before there was currency, one system that worked for
acquiring goods was barter. Let’s say Alice wants a tool and Bob wants medicine. If each of them
happen to have what the other person needs, then they can swap and both satisfy their needs.

On the other hand, let’s say Alice has food that she’s willing to trade for a tool, while Bob, who has a
tool, doesn’t have any need for food. He wants medicine instead. Alice and Bob can’t trade with each
other, but if there’s a third person, Carol, who has medicine that she’s willing to trade for food, then it
becomes possible to arrange a three-way swap where everyone gets what they need.

The drawback, of course, is coordination — arranging a group of people, whose needs and wants
align, in the same place at the same time. Two systems emerged to solve coordination: credit and
cash. Historians, anthropologists, and economists debate which of the two developed first, but that’s
immaterial for our purposes.

In a credit-based system, in the example above, Alice and Bob would be able to trade with each other.
Bob would give Alice the tool and Bob gets a favor that’s owed to him. In other words, Alice has a debt
that she needs to settle with Bob some time in the future. Alice’s material needs are now satisfied,
but she has a debt that she’d like to cancel, so that’s her new “want”. If Alice encounters Carol in the
future, Alice can trade her food for Carol’s medicine, then go back to Bob with the medicine and
cancel the debt.

On the other hand, in a cash-based system, Alice would buy the tool from Bob. Later, she might sell
her food to Carol, and Carol can sell her medicine to Bob, completing the cycle. These trades can
happen in any order, provided that the buyer in each transaction has cash on hand. In the end, of
course, it’s as if no money ever changed hands.

Neither system is clearly superior. A cash-based system needs to be “bootstrapped” with some initial
allocation of cash, without which no trades can occur. A credit-based system doesn’t need
bootstrapping, but the drawback is that anyone who’s owed a debt is taking on some risk. There’s a
chance that the other person never comes back to settle the debt.

Cash also allows us to be precise about how much something is worth. If you’re bartering, it’s hard to
say if a tool is worth more than medicine or medicine is worth more than food. Cash lets us use
numbers to talk about value. That’s why we use a blended system today — even when we’re using
credit, we measure debt in the amount of cash it would take to settle it.

These ideas come up in many contexts, especially online systems where users trade virtual goods of
some kind. For example, peer-to-peer file-sharing networks must deal with the problem of
“freeloaders,” that is, users who download files without sharing in turn. While swapping files might



work, there is also the issue of coordination: finding the perfect person who has exactly the file you
want and wants exactly the file you have. In projects like MojoNation and academic proposals like
Karma, users get some initial allocation of virtual cash that they must spend to receive a file and earn
when they send a copy of a file to another user. In both cases, one or more central servers help keep
track of users’ balances and may offer exchange services between their internal currency and
traditional currency. While MojoNation did not survive long enough to implement such an exchange,
it became the intellectual ancestor of some protocols used today: BitTorrent and Tahoe-LAFS.

The trouble with credit cards online

Credit and cash are fundamental ideas, to the point that we can sort the multitude of electronic
payment methods into two piles. Bitcoin is obviously in the “cash” pile, but let’s look at the other one
first.

Credit card transactions are the dominant payment method that is used on the web today. If you’ve
ever bought something from an online seller such as Amazon, you know how the arrangement goes.
You type in your credit card details, you send it to Amazon, and then Amazon turns around with these
credit card details and they talk to the “system”—a financial system involving processors, banks,
credit card companies, and other intermediaries.

On the other hand, if you use something like PayPal, what you see is an intermediary architecture.
There’s a company that sits between you and the seller, so you send your credit card details to this
intermediary, which approves the transaction and notifies the seller. The intermediary will settle its
balance with the seller at the end of each day.

What you gain from this architecture is that you don’t have to give the seller your credit card details,
which can be a security risk. You might not even have to give the seller your identity, which would
improve your privacy as well. The downside is that you lose the simplicity of interacting directly with
the seller. Both you and the seller might have to have an account with the same intermediary.

Today most of us are comfortable with giving out our credit card information when shopping online,
or at least we’ve grudgingly accepted it. We’re also used to companies collecting data about our
online shopping and browsing activity. But in the 1990s, the web was new, standards for
protocol-level encryption were just emerging, and these concerns made consumers deeply uncertain
and hesitant. In particular, it was considered crazy to hand over your credit card details to online
vendors of unknown repute over an insecure channel. In such an environment, there was a lot of
interest in the intermediary architecture.

A company called FirstVirtual was an early payment intermediary, founded in 1994. Incidentally, they
were one of the first companies to set up a purely virtual office with employees spread across the
country and communicating over the Internet — hence the name.



FirstVirtual’s proposed system was a little like PayPal’s current system but preceded it by many years.
As a user you’'d enroll with them and provide your credit card details. When you want to buy
something from a seller, the seller contacts FirstVirtual with the details of the requested payment,
FirstVirtual confirms these details with you, and if you approve your credit card gets billed. But two
details are interesting. First, all of this communication happened over email; web browsers back in the
day were just beginning to universally support encryption protocols like HTTPS, and the multi-party
nature of payment protocol added other complexities. (Other intermediaries took the approach of
encoding information into URLs or using a custom encryption protocol on top of HTTP.) Second, the
customer would have ninety days to dispute the charge, and the merchant would receive the money
only after three months! Today the merchant does get paid immediately, but, there still is the risk that
the customer will file a chargeback or dispute the credit card statement. If that happens, the
merchant will have to return the payment to the credit card company.

In the mid ‘90s there was a competing approach to the intermediary architecture which we’ll call the
SET architecture. SET also avoids the need for customers to send credit card information to
merchants, but it additionally avoids the user having to enroll with the intermediary. In SET, when you
are ready to make a purchase, your browser passes your view of the transaction details to a shopping
application on your computer which, together with your credit card details, encrypts it in such a way
that only the intermediary can decrypt it, and no one else can (including the seller). Having encrypted
your data it this way, you can send it to the seller knowing that it’s secure. The seller blindly forwards
the encrypted data to the intermediary — along with their own view of the transaction details. The
intermediary decrypts your data and approves the transaction only if your view matches the seller’s
view.

SET was a standard developed by VISA and MasterCard, together with many technology heavyweights
of the day: Netscape, IBM, Microsoft, Verisign, and RSA. It was an umbrella specification that unified
several existing proposals.

One company that implemented SET was called CyberCash. It was an interesting company in many
ways. In addition to credit card payment processing, they had a digital cash product called CyberCoin.
This was a micropayment system — intended for small payments such as paying a few cents to read
an online newspaper article. That meant that you’d probably never have more than $10 in your
CyberCoin account at any time. Yet, amusingly, they were able to get U.S. government (FDIC)
insurance for each account for up to $100,000.

There’s more. Back when CyberCash operated, there was a misguided — and now abandoned — U.S.
government restriction on the export of cryptography, which was considered a weapon. That meant
software that incorporated meaningful encryption couldn’t be offered for download to users in other
countries. However, CyberCash was able to get a special exemption for their software from the
Department of State. The government’s argument was that extracting the encryption technology out
of CyberCash’s software would be harder than writing the crypto from scratch.



Finally, CyberCash has the dubious distinction of being one of the few companies affected by the Y2K
bug — it caused their payment processing software to double-bill some customers. They later went
bankrupt in 2001. Their intellectual property was acquired by Verisign who then turned around and
sold it to PayPal where it lives today.

Why didn’t SET work? The fundamental problem has to do with certificates. A certificate is a way to
securely associate a cryptographic identity, that is, a public key, with a real-life identity. It's what a
website needs to obtain, from companies like Verisign that are called certification authorities, in order
to show up as secure in your browser (typically indicated by a lock icon). Putting security before
usability, CyberCash and SET decided that not only would processors and merchants in their system
have to get certificates, all users would have to get one as well. Getting a certificate is about as
pleasant as doing your taxes, so the system was a disaster. Over the decades, mainstream users have
said a firm and collective ‘no’ to any system that requires end-user certificates, and such proposals
have now been relegated to academic papers. Bitcoin deftly sidesteps this hairy problem by avoiding
real-life identities altogether. In Bitcoin, public keys themselves are the identities by which users are
known, as we'll see in Chapter 1.

In the mid 90s, when SET was being standardized, the World Wide Web Consortium was also looking
at standardizing financial payments. They wanted to do it by extending the HTTP protocol instead so
that users wouldn’t need extra software for transactions—they could just use their browser. In fact,
they had a very general proposal for how you might extend the protocol, and one of the use cases
that they had was doing payments. This never happened -- the whole extension framework was never
deployed in any browsers. In 2015, almost two decades later, the W3C has announced that it wants to
take another crack at it, and that Bitcoin will be part of that standardization this time around. Given all
the past failures, however, | won’t be holding my breath.

From Credit to (Crypto) Cash

Now let’s turn to cash. We compared cash and credit earlier, and noted that a cash system needs to
be “bootstrapped,” but the benefit is that it avoids the possibility of a buyer defaulting on her debt.
Cash offers two additional advantages. The first is better anonymity. Since your credit card is issued in
your name, the bank can track all your spending. But when you pay in cash, the bank doesn’t come
into the picture, and the other party doesn’t need to know who you are. Second, cash can enable
offline transactions where there’s no need to phone home to a third party in order to get the
transaction approved. Maybe later, they go to a third party like a bank to deposit the cash, but that’s
much less of a hassle.

Bitcoin doesn’t quite offer these two properties, but comes close enough to be useful. Bitcoin is not
anonymous to the same level as cash is. You don’t need to use your real identity to pay in Bitcoin, but
it’s possible that your transactions can be tied together based on the public ledger of transactions



with clever algorithms, and then further linked to your identity if you’re not careful. We'll get into the
messy but fascinating details behind Bitcoin anonymity in Chapter 6.

Bitcoin doesn’t work in a fully offline way either. The good news is it doesn’t require a central server,
instead relying on a peer-to-peer network which is resilient in the way that the Internet itself is. In
Chapter 3 we'll look at tricks like “green addresses” and micropayments which allow us to do offline
payments in certain situations or under certain assumptions.

The earliest ideas of applying cryptography to cash came from David Chaum in 1983. Let’s understand
this through a physical analogy. Let’s say | start giving out pieces of paper that say: “The bearer of this
note may redeem it for one dollar by presenting it to me” with my signature attached. If people trust
that I'll keep my promise and consider my signature unforgeable, they can pass around these pieces
of paper just like banknotes. In fact, banknotes themselves got their start as promissory notes issued
by commerecial banks. It’s only in fairly recent history that governments stepped in to centralize the
money supply and legally require banks to redeem notes.

| can do the same thing electronically with digital signatures, but that runs into the annoying “double
spending” problem — if you receive a piece of data representing a unit of virtual cash, you can make
two (or more) copies of it and pass it on to different people. To stick with our analogy, let’s stretch it a
little bit and assume that people can make perfect copies and we have no way to tell copies from the
original. Can we solve double spending in this world?

Here’s a possible solution: | put unique serial numbers into each note | give out. When you receive
such a note from someone, you check my signature, but you also call me on the phone to ask if a note
with that serial number has already been spent. Hopefully I'll say no, in which case you accept the
note. I'll record the serial number as spent in my ledger, and if you try to spend that note, it won’t
work because the recipient will call me and I'll tell them the note has already been spent. What you'’ll
need to do instead is to periodically bring me all the notes you’ve received, and I'll issue you the same
number of new notes with fresh serial numbers.

This works. It's cumbersome in real life, but straightforward digitally provided I've set up a server to
do the signing and record-keeping of serial numbers. The only problem is that this isn’t really cash any
more, because it’s not anonymous — when | issue a note to you | can record the serial number along
with your identity, and | can do the same when someone else later redeems it. That means | can keep
track of all the places where you’re spending your money.

This is where Chaum’s innovation comes in. He figured out to both keep the system anonymous and
prevent double-spending by inventing the digital equivalent of the following procedure: when lissue a
new note to you, you pick the serial number. You write it down on the piece of paper, but cover it so
that | can’t see it. Then I'll sign it, still unable to see the serial number. This is called a “blind signature”
in cryptography. It'll be in your interest to pick a long, random serial number to ensure that it will
most likely be unique. | don’t have to worry that you’ll pick a serial number that’s already been picked
— you can only shoot yourself in the foot by doing so and end up with a note that can’t be spent.



This was the first serious digital cash proposal. It works, but it still requires a server run by a central
authority, such as a bank, and for everyone to trust that entity. Moreover, every transaction needs
the participation of this server to go through. If the server goes down temporarily, payments grind to
a halt. A few years later, in 1988, Chaum in collaboration with two other cryptographers Fiat and Naor
proposed offline electronic cash. At first sight this might seem to be impossible: if you try to spend the
same digital note or coin at two different shops, how can they possibly stop this unless they’re both
connected to the same payment network or central entity?

The clever idea is to stop worrying about preventing double-spending and focus on detecting it, after
the fact, when the merchant re-connects to the bank server. After all, this is why you’re able to use
your credit card on an airplane even if there is no network connection up in the skies. The transaction
processing happens later when the airline is able to re-connect to the network. If your card is denied,
you’ll owe the airline (or your bank) money. If you think about it, quite a bit of traditional finance is
based on the idea of detecting an error or loss, followed by attempting to recover the money or
punish the perpetrator. If you write someone a personal check, they have no guarantee that the
money is actually in your account, but they can come after you if the check bounces. Conceivably, if
an offline electronic cash system were widely adopted, the legal system would come to recognize
double spending as a crime.

Chaum, Fiat, and Naor’s idea for detecting double spending was an intricate cryptographic dance. At a
high level, what it achieved was this: every digital coin issued to you encodes your identity, but in such
a way that no one except you, not even the bank, can decode it. Every time you spend your coin, the
recipient will require you to decode a random subset of the encoding, and they’ll keep a record of
this. This decoding isn’t enough to allow them to determine your identity. But if you ever double
spend a coin, eventually both recipients will go to the bank to redeem their notes, and when they do
this, the bank can put the two pieces of information together to decode your identity completely,
with an overwhelmingly high probability.

You might wonder if someone can frame you as a double spender in this system. Say you spend a coin
with me, and then | turned around and tried to double-spend it (without redeeming it with the bank
and getting a new coin with my identity encoded). This won’t work — the new recipient will ask me to
decode a random subset, and this will almost certainly not be the same as the subset you decoded for
me, so | won’t be able to comply with their decoding request.

Over the years, many cryptographers have looked at this construction and improved it in various
ways. In the Chaum-Fiat-Naor scheme, if a coin is worth $100, and you wanted to buy something that
cost only $75, say, there’s no way to split that coin into $75 and a $25. All you could do is go back to
the bank, cash in the $100 coin, and ask for a $75 coin and a $25 coin. But a paper by Okamoto and
Ohta uses “Merkle trees” to create a system that does allow you to subdivide your coins. Merkle trees
would show up in Bitcoin as well, and we’ll meet them in Chapter 1. The Chaum-Fiat-Naor scheme
also leaves a lot of room for improvements in efficiency. In particular, the application of something
called zero-knowledge proofs to this scheme (most notably by Brands; and Camenisch, Hohenberger,



and Lysyanskaya) was very fruitful—zero-knowledge proofs have also been applied to Bitcoin as we
will see in Chapter 6.

But back to Chaum: he took his ideas and commercialized them. He formed a company in 1989 called
DigiCash, probably the earliest company that tried to solve the problem of online payments. They had
about a five-year head start on other companies like FirstVirtual and CyberCash that we just
discussed. The actual cash in Digicash’s system was called Ecash and they had another system called
cyberbucks. There were banks that actually implemented it — a few in the US and at least one in
Finland. This was in the 1990s, long before Bitcoin, which might come as surprise to some Bitcoin
enthusiasts who view banks as tech-phobic, anti-innovative behemoths.

Ecash is based on Chaum’s protocols. Clients are anonymous, so banks can’t trace how they’re
spending their money. But merchants in ecash aren’t anonymous. They have to return coins as soon
as they receive them, so the bank knows how much they’re making, at what times, and so on.

Ecash Status
—Account information
Bank balance: $90.00
e% Bank address: bank@bank.digicash.com
Account ID: pcw@access.diged.com
Username: Peter Wayner

In cash: $4.00
Guaranteed payments: 6

Hide coins

Figure 2: Screenshot of DigiCash

Figure 2 shows a screenshot from the software. As you can see, it shows you your balance as well as
all the coins that you have that have been issued to you from the bank. Since there’s no way to split
your coins, the bank issues you a whole set of coins in denominations of a cent, two cents, four cents,
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and so on — powers of two. That way, you (or your software, on your behalf) can always select a set
of coins to pay for the exact amount of a transaction.

When you want to make a transaction, say, as in this example, you want to make a donation to the
non-profit privacy group EPIC, you’d click on a donation link that takes you to the Digicash website.
That would then open a reverse web connection back to your computer. That means your computer
had to have the ability to accept incoming connections and act as a server. You’d have to have your
own IP address and your ISP would have to allow incoming connections. If the connection was
successful, then the ecash software would launch on your computer and you’d be able to approve the
transaction and send the money.

Chaum had several patents on Digicash technology, in particular, the blind-signature scheme that it
used. This was controversial, and it stopped other people from developing ecash systems that used
the same protocol. But a bunch of cryptographers who hung out on what was called the cypherpunks
mailing list wanted an alternative. Cyperpunks was the predecessor to the mailing list where Satoshi
Nakamoto would later announce Bitcoin to the world, and this is no coincidence. We'll talk about the
cypherpunk movement and the roots of Bitcoin in Chapter 7.

The cypherpunk cryptographers implemented a version of of ecash called MagicMoney. It did violate
the patents, but was billed as being only for experimental use. It was a fun piece of software to play
with. The interface was all text-based. You could send transactions by email. You would just copy and
paste the transactions into your email and send it to another user. Hopefully, you’d use end-to-end
email encryption software such as PGP to protect the transaction in transit.

Then there’s a proposal called Lucre by Ben Laurie with contributions from many other people. Lucre
tries to replace the blind-signature scheme in ecash with a non-patent-encumbered alternative, with
the rest of the system largely the same.

Yet another proposal, by lan Goldberg, tries to fix the problem of not being able to split your coins to
make change. His idea was that the merchant could send you coins back if they had some coins, so
that you might overpay for the item if you didn’t have exact change, and then you’d get some coins
back. But notice that this introduces an anonymity problem. As we saw earlier, in ecash, senders are
anonymous but merchants aren’t. When the merchant sends cash back, technically, they’re the
sender, so they’re anonymous. But you, as someone who has to return this cash to the bank, aren’t
anonymous. There’s no way to design this system without breaking the anonymity of users trying to
buy goods. So Goldberg came up with a proposal where there were different types of coins that
would allow these transactions to occur, allow you to get change back, and still preserve your
anonymity.

Now, why did DigiCash fail? The main problem with DigiCash was that it was hard to persuade the
banks and the merchants to adopt it. Since there weren’t many merchants that accepted ecash, users
didn’t want it either. Worse, it didn’t support user-to-user transactions, or at least not very well. It
was really centered on the user-to-merchant transaction. So if merchants weren’t on board, there was
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no other way to bootstrap interest in the system. So at the end of the day, DigiCash lost and the credit
card companies won.

As a side note, Bitcoin allows user-to-merchant and user-to-user transactions. In fact, the protocol
doesn’t have a notion of merchant that’s separate from the notion of user. The support for
user-to-user transactions probably contributed to Bitcoin’s success. There was something to do with
your bitcoins right from the beginning: send it to other users, while the community tried to drum up
support for Bitcoin and get merchants to accept it.

In the later years of the company, DigiCash also experimented with tamper-resistant hardware to try
to prevent double-spending rather than just detecting it. In this system, you’d get a small hardware
device that was usually called a wallet, or some sort of card. The device would keep track of your
balance, which would decrease when you spent money and increase if you loaded the card with more
money. The point of the device is that there should be no way to physically or digitally go in and
tamper with its counter. So if the counter hits zero, then the card stops being able to spend money
until it’s re-loaded.

There were many other companies that had electronic cash systems based on tamper-resistant
hardware. DigiCash later worked with a company called CAFE which was based in Europe. Another
company formed around this idea was called Mondex and it was later acquired by Mastercard. Visa
also had their own variant called VisaCash.

Figure 3: Mondex system, showing user card and wallet.
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Figure 3 shows the user side of the Mondex system. There’s a smart card and there’s a wallet unit,
and you can load either of them with cash. And if you wanted to do user-to-user swap of money, the
giver user would first put their card into the wallet and move money off of the card onto the wallet.
Then the receiver would stick their card in the wallet then you’d move the money onto the second
card. This was a way to exchange digital cash, and it was anonymous.

Mondex trialled their technology in a bunch of communities. One community happened to be a city
very close to where | grew up: Guelph, Ontario. You've probably already guessed that it didn’t really
catch on. A major problem with Mondex cards is that they’re like cash — if you lose them or they get
stolen, the money’s gone. Worse, if there’s some sort of malfunction with the card, if the card reader
wouldn’t read it, there’s no way to figure out if that card had balance on it or not. In these scenarios,
Mondex would typically eat the cost. They’d assume that the card was loaded and reimburse the user
for that lost money. Of course, that can cost a company a lot of money.

Further, the wallet was slow and clunky. It was much faster to pay with a credit card or with cash. And
retailers hated having several payment terminals; they wanted just one for credit cards. All these
factors together did Mondex in.

However, these cards were smart cards, which means that they have small microcontrollers on them,
and that technology has proved successful. In many countries today, including Canada, where | live,
every single credit card and every single debit card now has smart card technology in it. It's used for a
different purpose, though. It’s not used to prevent double-spending — the problem doesn’t arise
since it’s not a cash-based technology. The bank, rather than your card, keeps track of your balance or
available credit. Instead the chip is used for authentication, that is, to prove that you know the PIN
that’s associated with your account. But Mondex was using it long before this technology was
adopted widely by the banking industry.

Minting Money out of Thin Air

In the DigiCash system, if you have a digital cash object that’s worth $100, what makes it actually
worth $100? The answer is simple: in order to obtain ecash worth $100, you’d have to take $100 out
of your bank account and give it to the bank that was issuing you the ecash. But there were a bunch of
different proposals for how to do this and different companies did it differently. One far-fetched
possibility: what if the government of a particular country actually authorized services to mint digital
money, creating new cash out of thin air? That was the idea behind NetCash, although it never got
beyond the proposal stage. A different system, used by e-Gold, was to put a pile of gold in a vault and
to issue digital cash only up to the value of the gold. Another company called Digigold wasn’t fully
backed by gold, but had partial reserves.

All of these ideas ultimately peg the value of digital cash to the dollar or a commodity. If the dollar’s
value goes up or down, the value of your digital money holdings will change along with it. A radically
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different possibility is to allow digital money to be it own currency, issued and valued independently
of any other currency.

To create a free-floating digital currency that is likely to acquire real value, you need to have
something that’s scarce by design. In fact, scarcity is also the reason why gold or diamonds have been
used as a backing for money. In the digital realm, one way to achieve scarcity is to design the system
so that minting money requires solving a computational problem (or “puzzle”) that takes a while to
crack. This is what happens in Bitcoin “mining”, which we’ll look at in Chapter 5.

The basic idea — that solutions to computational puzzles could be digital objects that have some
value — is pretty old. It was first proposed by cryptographers Dwork and Naor as a potential solution
to email spam back in 1992. What if, every time you sent an email, your computer would have to
solve one of these puzzles that would take a few seconds to solve? To enforce this requirement, the
recipient’s email program would simply ignore your email you didn’t attach the solution to the
computational puzzle. For the average user, it wouldn’t be that much of a barrier to sending emails
because you’re not sending emails very frequently. But if you’re a spammer, you’re trying to send out
thousands or millions of emails all at once, and solving those computational puzzles could become
prohibitive. A similar idea was later discovered independently by Adam Back in 1997 in a proposal
called Hashcash.

These computational puzzles need to have some specific properties to be a useful spam deterrent.
First, it should be impossible for a spammer to solve one puzzle and attach the solution to every email
he sends. To ensure this, the puzzle should be specific to the email: it should depend on the sender
and receiver, the contents of the email, and the approximate time at which it’s sent. Second, the
receiver should be able to easily check the puzzle solution without having to repeat the process of
solving the puzzle. Third, each puzzle should be totally independent of the others, in the sense that
solving one puzzle does not decrease the amount of time it takes to solve any other puzzle. Finally,
since hardware improves with time and solving any given computational puzzle gets faster and
cheaper, recipients should be able to adjust the difficulty of the puzzle solutions that they will accept.
These properties can be achieved by using cryptographic hash functions to design the puzzles, and
we’ll study this in Chapter 1.

Bitcoin uses essentially the same computational puzzle as Hashcash, but with some minor
improvements. Bitcoin does a lot more than Hashcash does, though — after all, it takes a whole book
to explain Bitcoin! | only mention this because Hashcash inventor Adam Back has said, “Bitcoin is
Hashcash extended with inflation control.” | think that’s overreaching a bit. It’s sort of like saying, “a
Tesla is just a battery on wheels.”

As with any good idea in cryptography, there are many variants of computational puzzles that aim to
achieve slightly different properties. One proposal comes from Rivest and Shamir, the R and the S in
the RSA cryptosystem. Observe that in Hashcash, your cost to solve a number of puzzles is simply the
sum of the individual costs, by design. But this is different from the cost structure for a government to
mint money. If you think about how anti-counterfeiting technology in a paper currency, there’s a huge
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initial cost to acquire all the equipment, create the security features, and so on. But once they’'ve
done all that, their costs go down, and it doesn’t matter much if they print one bill or a hundred bills.
In other words, minting paper money has a huge fixed cost but low marginal cost. Rivest and Shamir
wanted to design computational puzzles that would mimic these properties, so that minting the first
coin is massively computationally challenging, but minting subsequent coins is a lot cheaper. Their
proposal also utilized hash functions, but in a different way. We won’t get into the details of their
solution, but the problem they were trying to solve is interesting at a high level.

Why did Hashcash never catch on for its intended purpose of preventing spam? Perhaps spam just
wasn’t a big enough problem to solve. For most people spam as a nuisance, but not something that
they want to spend their computing cycles on combatting. We have spam filters today that work
pretty well at keeping spam out of our inboxes. It’s also possible Hashcash wouldn’t have actually
stopped spammers. In particular, most spammers today send their spam using ‘botnets’, large groups
of of other people’s computers that they take control of using malware. They might just as well use
those computers to harvest Hashcash. That said, the idea of using computational puzzles to limit
access to resources is still an idea that’s kicking around. You can see it in some proposals for replacing
network protocols, such as MinimalT.

Recording Everything in a Ledger

Another key component of Bitcoin is the block chain: a ledger in which all Bitcoin transactions are
securely recorded. The ideas behind the block chain are again quite old, and trace back to a paper by
Haber and Stornetta in 1991. Their proposal was a method for secure timestamping of digital
documents, rather than an digital money scheme. The goal of timestamping is to give an approximate
idea of when a document came into existence. More importantly, timestamping accurately conveys
the order of creation of these documents: if one came into existence before the other, the
timestamps will reflect that. The security property requires that a document’s timestamp can’t be
changed after the fact.

In Haber and Stornetta’s scheme, there’s a timestamping service to which clients send documents to
timestamp. When the server receives a document, it signs the document together with the current
time and as well as a link or a pointer to the previous document, and issues a “certificate” with this
information. The pointer in question a special type pointer which links to a piece of data instead of a
location. That means that if the data in question changes, the pointer automatically become invalid. In
Chapter 1 we’ll study how we can create such pointers using hash functions.

What this achieves is that each document’s certificate ensures the integrity of the contents of the
previous document. In fact, you can apply this argument recursively: each certificate essentially fixes
the entire history of documents and certificates up until that point. If we assume that each client in
the system keeps track of at least a few certificates — their own documents’ certificates, and those of
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the previous and following documents — then collectively the participants can ensure that the history

cannot be changed after the fact. In particular, the relative ordering of documents is preserved.

Figure 4: linked timestamping. To create a certificate for a document, the timestamp server includes
a hash pointer to the previous document’s certificate, the current time, and signs these three data
elements together.

A later paper proposed an efficiency improvement: instead of linking documents individually, we can
collect them into blocks and link blocks together in a chain. Within each block, the documents would
again be linked together, but in a tree structure instead of linearly. This decreases the amount of
checking needed to verify that a particular document appears at a particular point in the history of the
system. Visually, this hybrid scheme looks like Figure 5.

Figure 5: efficient linked timestamping. Arrows represent hash pointers and dotted vertical lines
indicate time intervals.

This data structure forms the skeleton of Bitcoin’s block chain, as we’ll see in Chapter 3. Bitcoin
refines it a subtle but important way: a Hashcash-esque protocol is used to delay how fast new blocks
are added to the chain. This modification has profound and favorable consequences for Bitcoin’s
security model. There is no longer the need for trusted servers; instead, events are recorded by a
collection of untrusted nodes called “miners”. Every miner keeps track of blocks, rather than having to
rely on regular users to do it. Anyone can become a miner by solving computational puzzles to create
blocks. Bitcoin also gets rid of signatures, relying only on hash pointers to ensure the integrity of the
data structure. Finally, the actual timestamps aren’t of much importance in Bitcoin, and the point of
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the system is to record the relative ordering of transactions in a tamper-resistant way. In fact, Bitcoin
blocks aren’t created in a fixed schedule. The system ensures that a new one is created every 10
minutes on average, but there’s considerable variation in the time between successive blocks.

In essence, Bitcoin combines the idea of using computational puzzles to regulate the creation of new
currency units with the idea of secure timestamping to record a ledger of transactions and prevent
double spending. There were earlier, less sophisticated proposals that combined these two ideas. The
first is called b-money, and it was by Wei Dai in 1998. In b-money, anyone can create money using a
hashcash-like system. There’s a peer-to-peer network, sort of like in Bitcoin. Each node maintains a
ledger, but it’s not a global ledger like in the Bitcoin block chain. Each node has its own ledger of what
it thinks everyone’s balance is.

Another similar proposal, by Nick Szabo, is called Bitgold. Szabo says he had the idea for Bitgold as
early as 1998, but didn’t get around to blogging about it until 2005. The reason | mention this is that
there’s a minor conspiracy theory popularized by Nathaniel Popper, a New York Times reporter who
wrote a very good book on the history of Bitcoin. Popper notes that the blog post timestamps were
changed after Satoshi posted the Bitcoin whitepaper so that the Bitgold proposal looks like it was
written up about two months after Bitcoin was released. Popper believes, like many other observers,
that Szabo could be Satoshi, and he cites the timestamp change as evidence of Szabo/Satoshi trying to
cover up the fact that he invented Bitgold before he knew about Bitcoin.

The problem with this explanation is that if you actually read the contents of the blog posts, Szabo is
very clear about having had this idea in 1998, and he doesn’t try to change those dates. So a more
reasonable explanation is that he just bumped the post to the top of his blog after Bitcoin popularized
similar ideas, to make sure that people were aware of his prior proposal.

Bitcoin has several important differences from b-money and Bitgold. In those proposals,
computational puzzles are used directly to mint currency. Anyone can solve a puzzle and the solution
is a unit of money itself. In Bitcoin, puzzle solutions themselves don’t constitute money. They are used
to secure the block chain, and only indirectly lead to minting money for a limited time. Second,
b-money and Bitgold rely on timestamping services that sign off on the creation or transfer of money.
Bitcoin, as we’ve seen, doesn’t require trusted timestamping, and merely tries to preserve the relative
order of blocks and transactions.

Finally, in b-money and Bitgold, if there is disagreement about the ledger among the servers or nodes,
there isn’t a clear way to resolve it. Letting the majority decide seems to be implicit in both authors’
writings. But since anyone can set up a node — or a hundred, hiding behind different identities —
these mechanisms aren’t very secure, unless there is a centralized gatekeeper who controls entry into
the network. In Bitcoin, by contrast, for an attacker to change history, they must solve computational
puzzles at a faster rate than the rest of the participants combined. This is not only more secure, it
allows us to quantify the security of the system.
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B-money and Bitgold were informal proposals — b-money was a post on a mailing list and Bitgold was
a series of blog posts. Neither took off, or was even implemented directly. Unlike the Bitcoin white
paper, there wasn’t a full specification or any code. The proposals gloss over issues that may or may
not be solvable. The first, as we’ve already mentioned, is how to resolve disagreements about the
ledger. Another problem is determining how hard the computational puzzle should be in order to
mint a unit of currency. Since hardware tends to get dramatically cheaper over time for a fixed
amount of computing power, Bitcoin incorporates a mechanism to automatically adjust the difficulty
of the puzzles periodically. B-money and Bitgold don’t include such a mechanism, which can result in
problems since coins may lose their value if it become trivially easy to create new ones.

Hints about Satoshi

You may know that Satoshi Nakamoto is the pseudonym adopted by the creator of Bitcoin. While his
identity remains a mystery, he communicated extensively in Bitcoin’s early days. Let’s use this to dig a
little bit into questions like when he started working on Bitcoin, to what extent he was influenced by
the prior ideas we’ve looked at, and what motivated him.

Satoshi says he started coding Bitcoin around May 2007. I'll take him at his word; the fact that he’s
anonymous is not a reason to think he’d lie about things like that. He registered the domain
bitcoin.org in August 2008. And at that time, he started sending private emails to a few people who he
thought might be interested in the proposal. Then a little later in October 2008, he publicly released a
white paper that described the protocol, and then soon after, he released the initial code for Bitcoin
as well. Then he stuck around for about two years, during which he posted lots of messages on
forums, emailed with lots of people, and responded to people’s concerns. On the programming side,
he submitted patches to the code. He maintained the source code in conjunction with other
developers, fixing issues as they arose. By December 2010, others had slowly taken over the
maintenance of the project, and he stopped communicating with them.

I've been referring to Satoshi Nakamoto as a “he,” but | have no particular reason to believe Satoshi is
a man and not a woman. I’'m just using the male pronoun since Satoshi is a male name. I've also been
referring to him as a single individual. There is a theory that Satoshi Nakamoto might be a collection
of individuals. | don’t buy this theory — | think Satoshi is probably just one person. The reason is that
if we look at the entirety of the online interactions undertaken under the Satoshi pseudonym, if we
think about the two years that Satoshi spent replying to emails and patching code, it’s hard to imagine
that this could be multiple people sharing user accounts and passwords, responding in a similar style
and a similar voice, and making sure they didn’t contradict each other. It just seems a much simpler
explanation that at least this portion of Satoshi’s activity was done by a single individual.

Furthermore, it’s clear from his writings and patches that this individual understood the full code base
of Bitcoin and all its design aspects. So it’s very reasonable to assume that the same individual wrote
the original code base and the white paper as well. Finally, it’s possible that Satoshi had help with the
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original design. However, after Bitcoin’s release, we can see for ourselves that Satoshi was quick to
attribute any help he received from other contributors. It would be out of character for him to
mislead us about inventing something by himself if he had had help from other people.

Next, we might ask ourselves, “What did Satoshi know about the history of ecash?” To understand
this better, we can start by looking at what he cites in his white paper as well as the references that
existed on early versions of the Bitcoin website. In the white paper he cites some papers on basic
cryptography and probability theory. He also cites the time-stamping work that we saw earlier, and
it’s very natural to think that he based the design of the block chain on these references since the
similarities are so apparent. He also cites the Hashcash proposal whose computational puzzle is very
similar to the one that’s used in Bitcoin. He also has a reference to b-money. Later, on the website, he
added references to Bitgold and as well to a scheme by Hal Finney for reusing computational puzzle
solutions.

But, if we look at the email exchanges that were made public by people who corresponded with
Satoshi Nakamoto in the early days, we find that the b-money proposal was actually added
after-the-fact, at the suggestion of Adam Back. Satoshi then emailed Wei Dai who created b-money
and apparently, Dai was the one that told him about Bitgold. So these proposals weren’t probably
inspirations for the original design. He later corresponded a lot with Hal Finney, and that’s quite a
reasonable explanation for why he cites Finney’s work, at least on the website.

Based on this, it seems plausible that when creating Bitcoin, Hashcash and time-stamping were the
only things from the history of ecash that Satoshi knew about or thought were relevant. After he
came to know of b-money and Bitgold, however, he seems to have appreciated their relevance. In
mid-2010, the Wikipedia article on Bitcoin was flagged for deletion Wikipedia’s editors because they
thought it wasn’t noteworthy. So there was some discussion between Satoshi and others about how
to word the article so that Wikipedia would accept it. To that end, Satoshi suggested this description
of Bitcoin: “Bitcoin is an implementation of Wei Dai’s b-money proposal on Cypherpunks in 1998 and
Nick Szabo’s Bitgold proposal.” So Satoshi, by this point, did see positioning Bitcoin as an extension of
these two ideas or an implementation of these two prior systems as a good explanation of how it
worked.

But, what about everything else — the Chaumian ecash schemes and the credit card proposals that
we looked at? Did Satoshi know any of that history when designing Bitcoin? It’s hard to tell. He didn’t
give any indication of knowing that history, but it’s just as likely that he didn’t reference this because
it wasn’t relevant to Bitcoin. Bitcoin uses a completely different decentralized model and so there’s no
compelling reason to dwell on old centralized systems that failed.

Satoshi himself makes this point, by mentioning Chaumian ecash in passing, in one of his posts to the
Bitcoin forums. Writing about another proposal called opencoin.org, he notes that they seem to be
“talking about the old Chaumian central mint stuff, but maybe only because that was the only thing
available. Maybe they would be interested in a new direction. A lot of people automatically dismiss
e-currency as a lost cause because of all the companies that failed since the 1990’s. | hope it’s obvious
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it was only the centrally controlled nature of those systems that doomed them. | think this is the first
time we're trying a decentralized, non-trust-based system.” That gives us a pretty good idea what
Satoshi thought of the earlier proposals, and specifically how he felt Bitcoin was different. Bitcoin’s
decentralization is indeed a defining feature that sets it apart from almost everything we’ve look at.

Another interesting quote from Satoshi suggests that he might not be an academic. Most academic
researchers think about ideas and write them down immediately, before they build the system.
Satoshi says that he took an opposite approach: “I actually did Bitcoin kind of backwards. | had to
write all the code before | could convince myself that | could solve every problem, then | wrote the
paper. | think | will be able to release the code sooner than | could write a detailed specification.”

Since there’s bit of myth around Satoshi, it's worth mentioning that he made mistakes like everyone
else and that wasn’t a perfect oracle of the future. There are bugs and questionable design choices in
the original Bitcoin code as well as in its design. For example, there was a feature to send bitcoins to
IP addresses that never caught on and, in retrospect, was a bad idea. When he described what Bitcoin
was useful for, his scenarios were centered on the idea of using it across the internet. That use case is
central to Bitcoin, of course, but it’s not the only one. He didn’t indicate a vision of going into a coffee
shop and being able to pay for your coffee with Bitcoin, for example.

A final question we may ask ourselves, colored by what we understand from the history of digital
cash, is, “Why does Satoshi maintain his anonymity?” There are many possible reasons. To begin with,
it might be just for fun. Many people write novels anonymously, and there are graffiti artists like
Banksy who maintain their anonymity. In fact, in the community that Satoshi was involved in at that
time, the Cypherpunk community and the cryptography mailing list, it was common practice for
people to post anonymously.

On the other hand, there could have been legal worries behind Satoshi’s choice. Two U.S. companies,
Liberty Reserve and e-Gold, ran into legal trouble for money laundering. In 2006, one of the founders
of Liberty Reserve fled the United States, fearing that he would be indicted on money laundering
charges. E-Gold’s founders, on the other hand, stayed in the United States, and one was actually
indicted and eventually pled guilty to the charges. This guilty plea was registered just right before
Satoshi set up the Bitcoin website and started emailing people about his proposal. That said,
numerous people have invented ecash systems, and nobody else was scared of the legal implications
or has chosen to remain anonymous. So this may have been the reason, it may not have been the
reason.

It's also worth recalling that certain aspects of ecash were patented, and that members of the
Cypherpunk movement were concerned about implementing ecash systems due to these patents. In
fact, one post to the cypherpunks mailing list proposed that a group of anonymous coders implement
ecash so that if someone were to sue, they wouldn’t be able to find the coders. While it is difficult to
think that Bitcoin would violate the ecash patents given how different its design is, perhaps Satoshi
was being extra cautious. Or maybe he was just inspired by the idea of an anonymous coder from the
cypherpunk community.



A final reason that’s often cited is personal security. We know that Satoshi has a lot of bitcoins from
his mining early on, and due to Bitcoin’s success these are now worth a lot of money. | think this is a
plausible reason. After all, choosing to be anonymous isn’t a decision you make once, it's something
that you do on a continual basis. That said, it probably wasn’t Satoshi’s original reason. The first time
Satoshi used the name Satoshi Nakamoto, he hadn’t even released the whitepaper or the codebase
for Bitcoin, and it’s hard to imagine that he had any idea that it would be as successful as it was. In
fact, at many points in its early history, Satoshi was optimistic but cautious about Bitcoin’s prospects.
He seems to have understood that many previous efforts had failed and that Bitcoin might fail as well.

Concluding remarks

The success of Bitcoin is quite remarkable if you consider all the ventures that failed trying to do what
it does. Bitcoin has several notable innovations including the block chain and a decentralized model
that supports user-to-user transactions. It provides a practically useful but less-than-perfect level of
anonymity for users. In Chapter 6 we’ll take a detailed look at anonymity in Bitcoin. In one sense it’s
weaker than the strong anonymity in DigiCash, but in another sense it’s stronger. That’s because in
DigiCash, it was only the senders of the money that maintained their anonymity, and not the
merchants. Bitcoin gives both senders and merchants (whether users or merchants) the same level of
anonymity.

Let me conclude with some lessons that we can learn from Bitcoin through the lens of the previous
systems that we’ve looked at. The first is to not give up on a problem. Just because people failed for
20 years in developing digital cash doesn’t mean there isn’t a system out there that will work. The
second is to be willing to compromise. If you want perfect anonymity or perfect decentralization you’ll
probably need to worsen other areas of your design. Bitcoin, in retrospect, seems to have made the
right compromises. It scales back anonymity a little bit and requires participants to be online and
connected to the peer-to-peer network, but this turned out to be acceptable to users.

A final lesson is success through numbers. Bitcoin was able to build up a community of passionate
users as well as developers willing to contribute to the open-source technology. This is a markedly
different approach than previous attempts at digital cash, which were typically developed by a
company, with the only advocates for the technology being the employees of the company itself.
Bitcoin’s current success is due in large part to the vibrant supporting community who pushed the
technology, got people using it, and got merchants to adopt it.
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Chapter 1: Introduction to Cryptography & Cryptocurrencies

All currencies need some way to control supply and enforce various security properties to prevent
cheating. In fiat currencies, organizations like central banks control the money supply and add
anti-counterfeiting features to physical currency. These security features raise the bar for an attacker,
but they don’t make money impossible to counterfeit. Ultimately, law enforcement is necessary for
stopping people from breaking the rules of the system.

Cryptocurrencies too must have security measures that prevent people from tampering with the state
of the system, and from equivocating, that is, making mutually inconsistent statements to different
people. If Alice convinces Bob that she paid him a digital coin, for example, she should not be able to
convince Carol that she paid her that same coin. But unlike fiat currencies, the security rules of
cryptocurrencies need to be enforced purely technologically and without relying on a central
authority.

As the word suggests, cryptocurrencies make heavy use of cryptography. Cryptography provides a
mechanism for securely encoding the rules of a cryptocurrency system in the system itself. We can
use it to prevent tampering and equivocation, as well as to encode the rules for creation of new units
of the currency into a mathematical protocol. Before we can properly understand cryptocurrencies
then, we'll need to delve into the cryptographic foundations that they rely upon.

Cryptography is a deep academic research field utilizing many advanced mathematical techniques
that are notoriously subtle and complicated to understand. Fortunately, Bitcoin only relies on a
handful of relatively simple and well-known cryptographic constructions. In this chapter, we’'ll
specifically study cryptographic hashes and digital signatures, two primitives that prove to be very
useful for building cryptocurrencies. Future chapters will introduce more complicated cryptographic
schemes, such as zero-knowledge proofs, that are used in proposed extensions and modifications to
Bitcoin.

Once we’ve learnt the necessary cryptographic primitives, we’ll discuss some of the ways in which
those are used to build cryptocurrencies. We'll complete this chapter with some examples of simple
cryptocurrencies that illustrate some of the design challenges that we need to deal with.

1.1 Cryptographic Hash Functions

The first cryptographic primitive that we’ll need to understand is a cryptographic hash function. A
hash function is a mathematical function with the following three properties:

Its input can be any string of any size.
It produces a fixed size output. For the purpose of making the discussion in this chapter
concrete, we will assume a 256-bit output size. However, our discussion holds true for any
output size as long as it is sufficiently large.

e ltis efficiently computable. Intuitively this means that for a given input string, you can figure
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out what the output of the hash function is in a reasonable amount of time. More technically,
computing the hash of an n-bit string should have a running time that is O(n).

Those properties define a general hash function, one that could be used to build a data structure such
as a hash table. We're going to focus exclusively on cryptographic hash functions. For a hash function
to be cryptographically secure, we’re going to require that it has the following three additional
properties: (1) collision-resistance, (2) hiding, (3) puzzle-friendliness.

We'll look more closely at each of these properties to gain an understanding of why it’s useful to have
a function that behaves that way. The reader who has studied cryptography should be aware that the
treatment of hash functions in this book is a bit different from a standard cryptography textbook. The
puzzle-friendliness property, in particular, is not a general requirement for cryptographic hash
functions, but one that will be useful for cryptocurrencies specifically.

Property 1: Collision-resistance. The first property that we need from a cryptographic hash function is
that it’s collision-resistant. A collision occurs when two distinct inputs produce the same output. A
hash function H(.) is collision-resistant if nobody can find a collision. Formally:

Collision-resistance: A hash function H is said to be collision resistant if it is infeasible to find two
values, x and y, such that x # y, yet H(x)=H(y).

H(x) = H(y)

Figure 1.1 A hash collision. x and y are distinct values, yet when input into hash function H, they
produce the same output.

Notice that we said nobody can find a collision, but we did not say that no collisions exist. Actually, we
know for a fact that collisions do exist, and we can prove this by a simple counting argument. The
input space to the hash function contains all strings of all lengths, yet the output space contains only
strings of a specific fixed length. Because the input space is larger than the output space (indeed, the
input space is infinite, while the output space is finite), there must be input strings that map to the
same output string. In fact, by the Pigeonhole Principle there will necessarily be a very large number
of possible inputs that map to any particular output.
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possible outputs

possible inputs

Figure 1.2 Because the number of inputs exceeds the number of outputs, we are guaranteed that
there must be at least one output to which the hash function maps more than one input.

Now, to make things even worse, we said that it has to be impossible to find a collision. Yet, there are
methods that are guaranteed to find a collision. Consider the following simple method for finding a
collision for a hash function with a 256-bit output size: pick 2°°° + 1 distinct values, compute the
hashes of each of them, and check if there are any two outputs are equal. Since we picked more
inputs than possible outputs, some pair of them must collide when you apply the hash function.

The method above is guaranteed to find a collision. But if we pick random inputs and compute the
hash values, we’ll find a collision with high probability long before examining 2?°® + 1 inputs. In fact, if
we randomly choose just 2*° + 1 inputs, it turns out there’s a 99.8% chance that at least two of them
are going to collide. The fact that we can find a collision by only examining roughly the square root of
the number of possible outputs results from a phenomenon in probability known as the birthday
paradox. In the homework questions at the end of this chapter, we will examine this in more detail.

This collision-detection algorithm works for every hash function. But, of course, the problem with it is
that this takes a very, very long time to do. For a hash function with a 256-bit output, you would have
to compute the hash function 2°°+ 1 times in the worst case, and about 2'*® times on average. That’s
of course an astronomically large number — if a computer calculates 10,000 hashes per second, it
would take more than one octillion (10%”) years to calculate 2'* hashes! For another way of thinking
about this, we can say that, if every computer ever made by humanity was computing since the
beginning of the entire universe, up to now, the odds that they would have found a collision is still
infinitesimally small. So small that it’s way less than the odds that the Earth will be destroyed by a
giant meteor in the next two seconds.

We have thus seen a general but impractical algorithm to find a collision for any hash function. A
more difficult question is: is there some other method that could be used on a particular hash
function in order to find a collision? In other words, although the generic collision detection algorithm
is not feasible to use, there still may be some other algorithm that can efficiently find a collision for a
specific hash function.

Consider, for example, the following hash function:
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H(x) =x mod 2236

This function meets our requirements of a hash function as it accepts inputs of any length, returns a
fixed sized output (256 bits), and is efficiently computable. But this function also has an efficient
method for finding a collision. Notice that this function just returns the last 256 bits of the input. One
collision then would be the values 3 and 3 + 27°°, This simple example illustrates that even though our
generic collision detection method is not usable in practice, there are at least some hash functions for
which an efficient collision detection method does exist.

Yet for other hash functions, we don’t know if such methods exist. We suspect that they are collision
resistant. However, there are no hash functions proven to be collision-resistant. The cryptographic
hash functions that we rely on in practice are just functions for which people have tried really, really
hard to find collisions and haven’t yet succeeded. In some cases, such as the old MD5 hash function,
collisions were eventually found after years of work, leading the function to be deprecated and
phased out of practical use. And so we choose to believe that those are collision resistant.

Application: Message digests Now that we know what collision-resistance is, the logical question is:
What is collision-resistance useful for? Here’s one application: If we know that two inputs x and y to a
collision-resistant hash function H are different, then it’s safe to assume that their hashes H(x) and
H(y) are different — if someone knew an x and y that were different but had the same hash, that
would violate our assumption that H is collision resistant.

This argument allows us to use hash outputs as a message digest. Consider SecureBox, an
authenticated online file storage system that allows users to upload files and ensure their integrity
when they download them. Suppose that Alice uploads really large file, and wants to be able to verify
later that the file she downloads is the same as the one she uploads. One way to do that would be to
save the whole big file locally, and directly compare it to the file she downloads. While this works, it
largely defeats the purpose of uploading it in the first place; if Alice needs to have access to a local
copy of the file to ensure its integrity, she can just use the local copy directly.

Collision-free hashes provide an elegant and efficient solution to this problem. Alice just needs to
remember the hash of the original file. When she later downloads the file from SecureBox, she
computes the hash of the downloaded file and compares it to the one she stored. If the hashes are
the same, then she can conclude that the file is indeed the one she uploaded, but if they are different,
then Alice can conclude that the file has been tampered with. Remembering the hash thus allows her
to detect accidental corruption of the file during transmission or on SecureBox'’s servers, but also
intentional modification of the file by the server. Such guarantees in the face of potentially malicious
behavior by other entities are at the core of what cryptography gives us.

The hash serves as a fixed length digest, or unambiguous summary, of a message. This gives us a very
efficient way to remember things we’ve seen before and recognize them again. Whereas the entire
file might have been gigabytes long, the hash is of fixed length, 256-bits for the hash function in our
example. This greatly reduces our storage requirement. Later in this chapter and throughout the
book, we’ll see applications for which it’s useful to use a hash as a message digest.
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Property 2: Hiding The second property that we want from our hash functions is that it’s hiding. The
hiding property asserts that if we’re given the output of the hash function y = H(x), there’s no feasible
way to figure out what the input, x, was. The problem is that this property can’t be true in the stated
form. Consider the following simple example: we’re going to do an experiment where we flip a coin. If
the result of the coin flip was heads, we’re going to announce the hash of the string “heads”. If the
result was tails, we’re going to announce the hash of the string “tails”.

We then ask someone, an adversary, who didn’t see the coin flip, but only saw this hash output, to
figure out what the string was that was hashed (we’ll soon see why we might want to play games like
this). In response, they would simply compute both the hash of the string “heads” and the hash of the
string “tails”, and they could see which one they were given. And so, in just a couple steps, they can
figure out what the input was.

The adversary was able to guess what the string was because there were only two possible values of
X, and it was easy for the adversary to just try both of them. In order to be able to achieve the hiding
property, it needs to be the case that there’s no value of x which is particularly likely. That is, x has to
be chosen from a set that’s, in some sense, very spread out. If x is chosen from such a set, this method
of trying a few values of x that are especially likely will not work.

The big question is: can we achieve the hiding property when the values that we want do not come
from a spread-out set as in our “heads” and “tails” experiment? Fortunately, the answer is yes! So
perhaps we can hide even an input that’s not spread out by concatenating it with another input that is
spread out. We can now be slightly more precise about what we mean by hiding (the double vertical
bar || denotes concatenation).

Hiding. A hash function H is hiding if: when a secret value r is chosen from a probability distribution
that has high min-entropy, then given H(r /| x) it is infeasible to find x.

In information-theory, min-entropy is a measure of how predictable an outcome is, and high
min-entropy captures the intuitive idea that the distribution (i.e., random variable) is very spread out.
What that means specifically is that when we sample from the distribution, there’s no particular value
that’s likely to occur. So, for a concrete example, if r is chosen uniformly from among all of the strings
that are 256 bits long, then any particular string was chosen with probability 1/2%°°, which is an
infinitesimally small value.

Application: Commitments. Now let’s look at an application of the hiding property. In particular, what
we want to do is something called a commitment. A commitment is the digital analog of taking a
value, sealing it in an envelope, and putting that envelope out on the table where everyone can see it.
When you do that, you’ve committed yourself to what’s inside the envelope. But you haven’t opened
it, so even though you’ve committed to a value, the value remains a secret from everyone else. Later,
you can open the envelope and reveal the value that you committed to earlier.
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Commitment scheme. A commitment scheme consists of two algorithms:

e com := commit(msg, nonce) The commit function takes a message and secret random
value, called a nonce, as input and returns a commitment.

e verify(com, msg, nonce) The verify function takes a commitment, nonce, and message as
input. It returns true if com == commit(msg, nonce) and false otherwise.

We require that the following two security properties hold:

® Hiding: Given com, it is infeasible to find msg
e Binding: It is infeasible to find two pairs (msg, nonce) and (msg’, nonce’) such that msg #
msg’ and commit(msg, nonce) == commit(msg’, nonce’)

To use a commitment scheme, we first need to generate a random nonce. We then apply the commit
function to this nonce together with msg, the value being committed to, and we publish the
commitment com. This stage is analogous to putting the sealed envelope on the table. At a later
point, if we want to reveal the value that they committed to earlier, we publish the random nonce
that we used to create this commitment, and the message, msg. Now, anybody can verify that msg
was indeed the message committed to earlier. This stage is analogous to opening up the envelope.

Every time you commit to a value, it is important that you choose a new random value nonce. In
cryptography, the term nonce is used to refer to a value that can only be used once.

The two security properties dictate that the algorithms actually behave like sealing and opening an
envelope. First, given com, the commitment, someone looking at the envelope can’t figure out what
the message is. The second property is that it’s binding. This ensures that when you commit to what’s
in the envelope, you can’t change your mind later. That is, it’s infeasible to find two different
messages, such that you can commit to one message, and then later claim that you committed to
another.

So how do we know that these two properties hold? Before we can answer this, we need to discuss
how we’re going to actually implement a commitment scheme. We can do so using a cryptographic
hash function. Consider the following commitment scheme:

commit(msg, nonce) := H(nonce [/ msg) where nonce is a random 256-bit value

To commit to a message, we generate a random 256-bit nonce. Then we concatenate the nonce and
the message and return the hash of this concatenated value as the commitment. To verify, someone
will compute this same hash of the nonce they were given concatenated with the message. And they
will check whether that’s equal to the commitment that they saw.

Take another look at the two properties that we require of our commitment schemes. If we substitute
the instantiation of commit and verify as well as H(nonce [/ msg) for com, then these properties
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become:

e Hiding: Given H(nonce [/ msg), itis infeasible to find msg
e Binding: It is infeasible to find two pairs (msg, nonce) and (msg’, nonce’) such that msg # msg’
and H(nonce /[ msg) == H(nonce’ [| msg’)

The hiding property of commitments is exactly the hiding property that we required for our hash
functions. If key was chosen as a random 256-bit value then the hiding property says that if we hash
the concatenation of key and the message, then it’s infeasible to recover the message from the hash
output. And it turns out that the binding property is implied by* the collision-resistant property of the
underlying hash function. If the hash function is collision-resistant, then it will be infeasible to find
distinct values msg and msg’ such that H(nonce [/ msg) = H(nonce’ || msg’) since such values would
indeed be a collision.

Therefore, if H is a hash function that is collision-resistant and hiding, this commitment scheme will
work, in the sense that it will have the necessary security properties.

Property 3: Puzzle friendliness. The third security property we’re going to need from hash functions is
that they are puzzle-friendly. This property is a bit complicated. We will first explain what the
technical requirements of this property are and then give an application that illustrates why this
property is useful.

Puzzle friendliness. A hash function H is said to be puzzle-friendly if for every possible n-bit output
value y, if k is chosen from a distribution with high min-entropy, then it is infeasible to find x such
that H(k || x) =y in time significantly less than 2".

Intuitively, what this means is that if someone wants to target the hash function to come out to some
particular output value y, that if there’s part of the input that is chosen in a suitably randomized way,
it’s very difficult to find another value that hits exactly that target.

Application: Search puzzle. Now, let’s consider an application that illustrates the usefulness of this
property. In this application, we’re going to build a search puzzle, a mathematical problem which
requires searching a very large space in order to find the solution. In particular, a search puzzle has no
shortcuts. That is, there’s no way to find a valid solution other than searching that large space.

! The reverse implications do not hold. That is, it’s possible that you can find collisions, but none of them are of the
form H(nonce [/ msg) ==H(nonce’ || msg’). For example, if you can only find a collision in which two distinct nonces
generate the same commitment for the same message, then the commitment scheme is still binding, but the
underlying hash function is not collision-resistant.
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Search puzzle. A search puzzle consists of

® 3 hash function, H,
e avalue, id (which we call the puzzle-ID), chosen from a high min-entropy distribution
e andatargetsetY

A solution to this puzzle is a value, x, such that

H(id || x) €Y.

The intuition is this: if H has an n-bit output, then it can take any of 2" values. Solving the puzzle
requires finding an input so that the output falls within the set Y, which is typically much smaller than
the set of all outputs. The size of Y determines how hard the puzzle is. If Y is the set of all n-bit strings
the puzzle is trivial, whereas if Y has only 1 element the puzzle is maximally hard. The fact that the
puzzle id has high min-entropy ensures that there are no shortcuts. On the contrary, if a particular
value of the ID were likely, then someone could cheat, say by pre-computing a solution to the puzzle
with that ID.

If a search puzzle is puzzle-friendly, this implies that there’s no solving strategy for this puzzle which is
much better than just trying random values of x. And so, if we want to pose a puzzle that’s difficult to
solve, we can do it this way as long as we can generate puzzle-IDs in a suitably random way. We’re
going to use this idea later when we talk about Bitcoin mining, which is a sort of computational puzzle.

SHA-256. We've discussed three properties of hash functions, and one application of each of those.
Now let’s discuss a particular hash function that we’re going to use a lot in this book. There are lots of
hash functions in existence, but this is the one Bitcoin uses primarily, and it’s a pretty good one to use.
It’s called SHA-256.

Recall that we require that our hash functions work on inputs of arbitrary length. Luckily, as long as
we can build a hash function that works on fixed-length inputs, there’s a generic method to convert it
into a hash function that works on arbitrary-length inputs. It’s called the Merkle-Damgard transform.
SHA-256 is one of a number of commonly used hash functions that make use of this method. In
common terminology, the underlying fixed-length collision-resistant hash function is called the
compression function. It has been proven that if the underlying compression function is collision
resistant, then the overall hash function is collision resistant as well.

The Merkle-Damgard transform is quite simple. Say the compression function takes inputs of length m
and produces an output of a smaller length n. The input to the hash function, which can be of any size,
is divided into blocks of length m-n. The construction works as follows: pass each block together with
the output of the previous block into the compression function. Notice that input length will then be
(m-n) + n =m, which is the input length to the compression function. For the first block, to which
there is no previous block output, we instead use an Initialization Vector (IV). This number is reused
for every call to the hash function, and in practice you can just look it up in a standards document. The
last block’s output is the result that you return.
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SHA-256 uses a compression function that takes 768-bit input and produces 256-bit outputs. The
block size is 512 bits. See Figure 1.3 for a graphical depiction of how SHA-256 works.

512 bits
Message Message Message
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Figure 1.3: SHA-256 Hash Function (simplified). SHA-256 uses the Merkle-Damgard transform to turn
a fixed-length collision-resistant compression function into a hash function that accepts
arbitrary-length inputs. The input is “padded” so that its length is a multiple of 512 bits.

We've talked about hash functions, cryptographic hash functions with special properties, applications
of those properties, and a specific hash function that we use in Bitcoin. In the next section, we’ll
discuss ways of using hash functions to build more complicated data structures that are used in
distributed systems like Bitcoin.

Sidebar: modeling hash functions. Hash functions are the Swiss Army knife of cryptography: they
find a place in a spectacular variety of applications. The flip side to this versatility is that different
applications require slightly different properties of hash functions to ensure security. It’s proven
notoriously hard to pin down a list of hash function properties that would result in provable
security across the board.

In this text, we’ve selected three properties that are crucial to the way that hash functions are used
in Bitcoin and other cryptocurrencies. Even within this space, not all of these properties are
necessary for every use of hash functions. For example, puzzle-friendliness is only important in
Bitcoin mining, as we’'ll see.

Designers of secure systems often throw in the towel and model hash functions as functions that
output an independent random value for every possible input. The use of this “random oracle
model” for proving security remains controversial in cryptography. Regardless of one’s position on
this debate, reasoning about how to reduce the security properties that we want in our applications
to fundamental properties of the underlying primitives is a valuable intellectual exercise for
building secure systems. Our presentation in this chapter is designed to help you learn this skill.




1.2 Hash Pointers and Data Structures

In this section, we’re going to discuss hash pointers and their applications. A hash pointer is a data
structure that turns out to be useful in many of the systems that we will talk about. A hash pointer is
simply a pointer to where some information is stored together with a cryptographic hash of the
information. Whereas a regular pointer gives you a way to retrieve the information, a hash pointer
also gives you a way to verify that the information hasn’t changed.

]

H(l)

(data)

Figure 1.4 Hash pointer. A hash pointer is a pointer to where data is stored together with a
cryptographic hash of the value of that data at some fixed point in time.

We can use hash pointers to build all kinds of data structures. Intuitively, we can take a familiar data
structure that uses pointers such as a linked list or a binary search tree and implement it with hash
pointers, instead of pointers as we normally would.

Block chain. In Figure 1.5, we built a linked list using hash pointers. We're going to call this data
structure a block chain. Whereas as in a regular linked list where you have a series of blocks, each
block has data as well as a pointer to the previous block in the list, in a block chain the previous block
pointer will be replaced with a hash pointer. So each block not only tells us where the value of the
previous block was, but it also contains a digest of that value that allows us to verify that the value
hasn’t changed. We store the head of the list, which is just a regular hash-pointer that points to the
most recent data block.
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Figure 1.5 Block chain. A block chain is a linked list that is built with hash pointers instead of pointers.

A use case for a block chain is a tamper-evident log. That is, we want to build a log data structure that
stores a bunch of data, and allows us to append data onto the end of the log. But if somebody alters
data that is earlier in the log, we’re going to detect it.

To understand why a block chain achieves this tamper-evident property, let’s ask what happens if an
adversary wants to tamper with data that’s in the middle of the chain. Specifically, the adversary’s
goal is to do it in such a way that someone who remembers only the hash pointer at the head of the
block chain won’t be able to detect the tampering. To achieve this goal, the adversary changes the
data of some block k. Since the data has been changed, the hash in block k + 1, which is a hash of the
entire block k, is not going to match up. Remember that we are statistically guaranteed that the new
hash will not match the altered content since the hash function is collision resistant. And so we will
detect the inconsistency between the new data in block k and the hash pointer in block k + 1. Of
course the adversary can continue to try and cover up this change by changing the next block’s hash
as well. The adversary can continue doing this, but this strategy will fail when he reaches the head of
the list. Specifically, as long as we store the hash pointer at the head of the list in a place where the
adversary cannot change it, the adversary will be unable to change any block without being detected.

The upshot of this is that if the adversary wants to tamper with data anywhere in this entire chain, in
order to keep the story consistent, he’s going to have to tamper with the hash pointers all the way
back to the beginning. And he’s ultimately going to run into a roadblock because he won’t be able to
tamper with the head of the list. Thus it emerges, that by just remembering this single hash pointer,
we've essentially remembered a tamper-evident hash of the entire list. So we can build a block chain
like this containing as many blocks as we want, going back to some special block at the beginning of
the list, which we will call the genesis block.

You may have noticed that the block chain construction is similar to the Merkle-Damgard construction
that we saw in the previous section. Indeed, they are quite similar, and the same security argument
applies to both of them.
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Figure 1.6 Tamper-evident log. |f an adversary modifies data anywhere in the block chain, it will result
in the hash pointer in the following block being incorrect. If we store the head of the list, then even if
the adversary modifies all of the pointers to be consistent with the modified data, the head pointer
will be incorrect, and we will detect the tampering.

Merkle trees. Another useful data structure that we can build using hash pointers is a binary tree. A
binary tree with hash pointers is known as a Merkle tree, after its inventor Ralph Merkle. Suppose we
have a number of blocks containing data. These blocks comprise the leaves of our tree. We group
these data blocks into pairs of two, and then for each pair, we build a data structure that has two hash
pointers, one to each of these blocks. These data structures make the next level up of the tree. We in
turn group these into groups of two, and for each pair, create a new data structure that contains the
hash of each. We continue doing this until we reach a single block, the root of the tree.
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Figure 1.7 Merkle tree. In a Merkle tree, data blocks are grouped in pairs and the hash of each of
these blocks is stored in a parent node. The parent nodes are in turn grouped in pairs and their hashes
stored one level up the tree. This continues all the way up the tree until we reach the root node.

As before, we remember just the hash pointer at the head of the tree. We now have the ability
traverse down through the hash pointers to any point in the list. This allows us make sure that the
data hasn’t been tampered with because, just like we saw with the block chain, if an adversary
tampers with some data block at the bottom of the tree, that will cause the hash pointer that’s one
level up to not match, and even if he continues to tamper with this block, the change will eventually
propagate to the top of the tree where he won’t be able to tamper with the hash pointer that we’ve
stored. So again, any attempt to tamper with any piece of data will be detected by just remembering
the hash pointer at the top.

Proof of membership. Another nice feature of Merkle trees is that, unlike the block chain that we built
before, it allows a concise proof of membership. Say that someone wants to prove that a certain data
block is a member of the Merkle Tree. As usual, we remember just the root. Then they need to show
us this data block, and the blocks on the path from the data block to the root. We can ignore the rest
of the tree, as the blocks on this path are enough to allow us to verify the hashes all the way up to the
root of the tree. See Figure 1.8 for a graphical depiction of how this works.

If there are n nodes in the tree, only about log(n) items need to be shown. And since each step just
requires computing the hash of the child block, it takes about log(n) time for us to verify it. And so
even if the Merkle tree contains a very large number of blocks, we can still prove membership in a
relatively short time. Verification thus runs in time and space that’s logarithmic in the number of
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nodes in the tree.
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Figure 1.8 Proof of membership. To prove that a data block is included in the tree, one only needs to
show the blocks in the path from that data block to the root.

A sorted Merkle tree is just a Merkle tree where we take the blocks at the bottom, and we sort them
using some ordering function. This can be alphabetical, lexicographical order, numerical order, or
some other agreed upon ordering.

Proof of non-membership. With a sorted Merkle tree, it becomes possible to verify non-membership
in a logarithmic time and space. That is, we can prove that a particular block is not in the Merkle tree.
And the way we do that is simply by showing a path to the item that’s just before where the item in
guestion would be and showing the path to the item that is just after where it would be. If these two
items are consecutive in the tree, then this serves as a proof that the item in question is not included.
For if it was included, it would need to be between the two items shown, but there is no space
between them as they are consecutive.

We've discussed using hash pointers in linked lists and binary trees, but more generally, it turns out
that we can use hash pointers in any pointer-based data structure as long as the data structure
doesn’t have cycles. If there are cycles in the data structure, then we won’t be able to make all the
hashes match up. If you think about it, in an acyclic data structure, we can start near the leaves, or
near the things that don’t have any pointers coming out of them, compute the hashes of those, and
then work our way back toward the beginning. But in a structure with cycles, there’s no end we can
start with and compute back from.

So, to consider another example, we can build a directed acyclic graph out of hash pointers. And we’ll
be able to verify membership in that graph very efficiently. And it will be easy to compute. Using hash
pointers in this manner is a general trick that you’ll see time and again in the context of the
distributed data structures and throughout the algorithms that we discuss later in this chapter and
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throughout this book.

1.3 Digital Signatures

In this section, we’ll look at digital signatures. This is the second cryptographic primitive, along with
hash functions, that we need as building blocks for the cryptocurrency discussion later on. A digital
sighature is supposed to be the digital analog to a handwritten signature on paper. We desire two
properties from digital signatures that correspond well to the handwritten signature analogy. Firstly,
only you can make your signature, but anyone who sees it can verify that it’s valid. Secondly, we want
the signature to be tied to a particular document so that the signature cannot be used to indicate
your agreement or endorsement of a different document. For handwritten signatures, this latter
property is analogous to assuring that somebody can’t take your signature and snip it off one
document and glue it onto the bottom of another one.

How can we build this in a digital form using cryptography? First, let’s make the previous intuitive
discussion slightly more concrete. This will allow us to reason better about digital signature schemes
and discuss their security properties.

Digital signature scheme. A digital signature scheme consists of the following three algorithms:

e (sk, pk) := generateKeys(keysize) The generateKeys method takes a key size and generates
a key pair. The secret key sk is kept privately and used to sign messages. pk is the public
verification key that you give to everybody. Anyone with this key can verify your signature.

e sig :=sign(sk, message) The sign method takes a message and a secret key, sk, as input and
outputs a signature for message under sk

e isValid := verify(pk, message, sig) The verify method takes a message, a signature, and a
public key as input. It returns a boolean value, isValid, that will be true if sig is a valid
signature for message under public key pk, and false otherwise.

We require that the following two properties hold:

e Valid signatures must verify
verify(pk, message, sign(sk, message)) == true
e Signatures are existentially unforgeable

We note that generateKeys and sign can be randomized algorithms. Indeed, generateKeys had better
be randomized because it ought to be generating different keys for different people. verify, on the
other hand, will always be deterministic.

Let us now examine the two properties that we require of a digital signature scheme in more detail.

The first property is straightforward — that valid signatures must verify. If | sign a message with sk, my
secret key, and someone later tries to validate that signature over that same message using my public
key, pk, the signature must validate correctly. This property is a basic requirement for signatures to be
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useful at all.

Unforgeability. The second requirement is that it's computationally infeasible to forge signatures.
That is, an adversary who knows your public key and gets to see your signatures on some other
messages can’t forge your signature on some message for which he has not seen your signature. This
unforgeability property is generally formalized in terms of a game that we play with an adversary. The
use of games is quite common in cryptographic security proofs.

In the unforgeability game, there is an adversary who claims that he can forge signatures and a
challenger that will test this claim. The first thing we do is we use generateKeys to generate a secret
sighing key and a corresponding public verification key. We give the secret key to the challenger, and
we give the public key to both the challenger and to the adversary. So the adversary only knows
information that’s public, and his mission is to try to forge a message. The challenger knows the secret
key. So he can make signatures.

Intuitively, the setup of this game matches real world conditions. A real-life attacker would likely be
able to see valid signatures from their would-be victim on a number of different documents. And
maybe the attacker could even manipulate the victim into signing innocuous-looking documents if
that’s useful to the attacker.

To model this in our game, we’re going to allow the attacker to get signatures on some documents of
his choice, for as long as he wants, as long as the number of guesses is plausible. To give an intuitive
idea of what we mean by a plausible number of guesses, we would allow the attacker to try 1 million
guesses, but not 2% guesses’.

Once the attacker is satisfied that he’s seen enough signatures, then the attacker picks some message,
M, that they will attempt to forge a signature on. The only restriction on M is that it must be a
message for which the attacker has not previously seen a signature (because the attacker can
obviously send back a signature that he was given!). The challenger runs the verify algorithm to
determine if the signature produced by the attacker is a valid signature on M under the public
verification key. If it successfully verifies, the attacker wins the game.

2 In asymptotic terms, we allow the attacker to try a number of guesses that is a polynomial function of the key size,
but no more (e.g. the attacker cannot try exponentially many guesses).
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Figure 1.9 Unforgeability game. The adversary and the challenger play the unforgeability game. If the
attacker is able to successfully output a signature on a message that he has not previously seen, he
wins. If he is unable, the challenger wins and the digital signature scheme is unforgeable.

We say that the signature scheme is unforgeable if and only if, no matter what algorithm the
adversary is using, his chance of successfully forging a message is extremely small — so small that we
can assume it will never happen in practice.

Practical Concerns. There are a number of practical things that we need to do to turn the algorithmic
idea into a digital signature mechanism that can be implemented in practice. For example, many
signature algorithms are randomized (in particular the one used in Bitcoin) and we therefore need a
good source of randomness. The importance of this really can’t be underestimated as bad
randomness will make your otherwise-secure algorithm insecure.

Another practical concern is the message size. In practice, there’s a limit on the message size that
you’re able to sign because real schemes are going to operate on bit strings of limited length. There’s
an easy way around this limitation: sign the hash of the message, rather than the message itself. If we
use a cryptographic hash function with a 256-bit output, then we can effectively sign a message of any
length as long as our signature scheme can sign 256-bit messages. As we discussed before, it’s safe to
use the hash of the message as a message digest in this manner since the hash function is collision



resistant.

Another trick that we will use later is that you can sign a hash pointer. If you sign a hash pointer, then
the signature covers, or protects, the whole structure — not just the hash pointer itself, but
everything the chain of hash pointers points to. For example, if you were to sign the hash pointer that
was at the end of a block chain, the result is that you would effectively be digitally signing the that
entire block chain.

ECDSA. Now let’s get into the nuts and bolts. Bitcoin uses a particular digital signature scheme that’s
called the Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is a U.S. government standard, an
update of the earlier DSA algorithm adapted to use elliptic curves. These algorithms have received
considerable cryptographic analysis over the years and are generally believed to be secure.

More specifically, Bitcoin uses ECDSA over the standard elliptic curve “secp256k1” which is estimated
to provide 128 bits of security (that is, it is as difficult to break this algorithm as performing 2%
symmetric-key cryptographic operations such as invoking a hash function). While this curve is a
published standard, it is rarely used outside of Bitcoin, with other applications using ECDSA (such as
key exchange in TLS for secure web browsing) typically using the more common “secp256r1” curve.
This is just a quirk of Bitcoin, as this was chosen by Satoshi in the early specification of the system and
is now difficult to change.

We won’t go into all the details of how ECDSA works as there’s some complicated math involved, and

understanding it is not necessary for any other content in this book. If you’re interested in the details,
refer to our further reading section at the end of this chapter. It might be useful to have an idea of the
sizes of various quantities, however:

Private key: 256 bits
Public key, uncompressed: 512 bits
Public key, compressed: 257 bits
Message to be signed: 256 bits
Signature: 512 bits
Note that while ECDSA can technically only sign messages 256 bits long, this is not a problem:

messages are always hashed before being signed, so effectively any size message can be efficiently
signed.

With ECDSA, a good source of randomness is essential because a bad source of randomness will likely
leak your key. It makes intuitive sense that if you use bad randomness in generating a key, then the
key you generate will likely not be secure. But it’s a quirk of ECDSA® that, even if you use bad

3 For those familiar with DSA, this is a general quirk in DSA and not specific to the elliptic-curve variant.
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randomness just in making a signature, using your perfectly good key, that also will leak your private
key. And then it’s game over; if you leak your private key, an adversary can forge your signature. We
thus need to be especially careful about using good randomness in practice, and using a bad source of
randomness is a common pitfall of otherwise secure systems.

This completes our discussion of digital signatures as a cryptographic primitive. In the next section,
we'll discuss some applications of digital signatures that will turn out to be useful for building
cryptocurrencies.

Sidebar: cryptocurrencies and encryption. If you've been waiting to find out which encryption
algorithm is used in Bitcoin, we're sorry to disappoint you. There is no encryption in Bitcoin,
because nothing needs to be encrypted, as we'll see. Encryption is only one of a rich suite of
techniques made possible by modern cryptography. Many of them, such as commitment schemes,
involve hiding information in some way, but they are distinct from encryption.

1.4 Public Keys as Identities

Let’s look at a nice trick that goes along with digital signatures. The idea is to take a public key, one of
those public verification keys from a digital signature scheme, and equate that to an identity of a
person or an actor in a system. If you see a message with a signature that verifies correctly under a
public key, pk, then you can think of this as pk is saying the message. You can literally think of a public
key as kind of like an actor, or a party in a system who can make statements by signing those
statements. From this viewpoint, the public key is an identity. In order for someone to speak for the
identity pk, they must know the corresponding secret key, sk.

A consequence of treating public keys as identities is that you can make a new identity whenever you
want — you simply create a new fresh key pair, sk and pk, via the generateKeys operation in our
digital signature scheme. pk is the new public identity that you can use, and sk is the corresponding
secret key that only you know and lets you speak for on behalf of the identity pk. In practice, you may
use the hash of pk as your identity since public keys are large. If you do that, then in order to verify
that a message comes from your identity, one will have to check (1) that pk indeed hashes to your
identity, and (2) the message verifies under public key pk.

Moreover, by default, your public key pk will basically look random, and nobody will be able to
uncover your real world identity by examining pk.? You can generate a fresh identity that looks
random, that looks like a face in the crowd, and that only you can control.

Decentralized identity management. This brings us to the idea of decentralized identity management.
Rather than having a central authority that you have to go to in order to register as a user in a system,
you can register as a user all by yourself. You don’t need to be issued a username nor do you need to

* Of course, once you start making statements using this identity, these statements may leak information that allows
one to connect pk to your real world identity. We will discuss this in more detail shortly.
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inform someone that you’re going to be using a particular name. If you want a new identity, you can
just generate one at any time, and you can make as many as you want. If you prefer to be known by
five different names, no problem! Just make five identities. If you want to be somewhat anonymous
for a while, you can make a new identity, use it just for a little while, and then throw it away. All of
these things are possible with decentralized identity management, and this is the way Bitcoin, in fact,
does identity. These identities are called addresses, in Bitcoin jargon. You’ll frequently hear the term
address used in the context of Bitcoin and cryptocurrencies, and that’s really just a hash of a public
key. It's an identity that someone made up out of thin air, as part of this decentralized identity
management scheme.

Sidebar. The idea that you can generate an identity without a centralized authority may seem
counterintuitive. After all, if someone else gets lucky and generates the same key as you can’t they
steal your bitcoins?

The answer is that the probability of someone else generating the same 256-bit key as you is so
small that we don’t have to worry about it in practice. We are for all intents and purposes
guaranteed that it will never happen.

More generally, in contrast to beginners’ intuition that probabilistic systems are unpredictable and
hard to reason about, often the opposite is true — the theory of statistics allows us to precisely
guantify the chances of events we’re interested in and make confident assertions about the
behavior of such systems.

But there’s a subtlety: the probabilistic guarantee is true only when keys are generated at random.
The generation of randomness is often a weak point in real systems. If two users’ computers use
the same source of randomness or use predictable randomness, then the theoretical guarantees no
longer apply. So it is crucial to use a good source of randomness when generating keys to ensure
that practical guarantees match the theoretical ones.

On first glance, it may seems that decentralized identity management leads to great anonymity and
privacy. After all, you can create a random-looking identity all by yourself without telling anyone your
real-world identity. But it’s not that simple. Over time, the identity that you create makes a series of
statements. People see these statements and thus know that whoever owns this identity has done a
certain series of actions. They can start to connect the dots, using this series of actions to infer things
about your real-world identity. An observer can link together these things over time, and make
inferences that lead them to conclusions such as, “Gee, this person is acting a lot like Joe. Maybe this
person is Joe.”

In other words, in Bitcoin you don’t need to explicitly register or reveal your real-world identity, but
the pattern of your behavior might itself be identifying. This is the fundamental privacy question in a
cryptocurrency like Bitcoin, and indeed we’ll devote the entirety of Chapter 6 to it.
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1.5 A Simple Cryptocurrency

Now let’s move from cryptography to cryptocurrencies. Eating our cryptographic vegetables will start
to pay off here, and we’ll gradually see how the pieces fit together and why cryptographic operations
like hash functions and digital signatures are actually useful. In this section we’ll discuss two very
simple cryptocurrencies. Of course, it’s going to require much of the rest of the book to spell out all
the implications of how Bitcoin itself works.

GoofyCoin

The first of the two is GoofyCoin, which is about the simplest cryptocurrency we can imagine. There
are just two rules of GoofyCoin. The first rule is that a designated entity, Goofy, can create new coins
whenever he wants and these newly created coins belong to him.

To create a coin, Goofy generates a unique coin ID uniqueCoinID that he’s never generated before
and constructs the string “CreateCoin [uniqueCoinID]”. He then computes the digital signature of
this string with his secret signing key. The string, together with Goofy’s signature, is a coin. Anyone
can verify that the coin contains Goofy’s valid signature of a CreateCoin statement, and is therefore a
valid coin.

The second rule of GoofyCoin is that whoever owns a coin can transfer it on to someone else.
Transferring a coin is not simply a matter of sending the coin data structure to the recipient — it’s
done using cryptographic operations.

Let’s say Goofy wants to transfer a coin that he created to Alice. To do this he creates a new
statement that says “Pay this to Alice” where “this” is a hash pointer that references the coin in
question. And as we saw earlier, identities are really just public keys, so “Alice” refers to Alice’s public
key. Finally, Goofy signs the string representing the statement. Since Goofy is the one who originally
owned that coin, he has to sign any transaction that spends the coin. Once this data structure
representing Goofy’s transaction signed by him exists, Alice owns the coin. She can prove to anyone
that she owns the coin, because she can present the data structure with Goofy’s valid signature.
Furthermore, it points to a valid coin that was owned by Goofy. So the validity and ownership of coins
are self-evident in the system.

Once Alice owns the coin, she can spend it in turn. To do this she creates a statement that says, “Pay
this coin to Bob’s public key” where “this” is a hash pointer to the coin that was owned by her. And of
course, Alice signs this statement. Anyone, when presented with this coin, can verify that Bob is the
owner. They would follow the chain of hash pointers back to the coin’s creation and verify that at
each step, the rightful owner signed a statement that says “pay this coin to [new owner]”.
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Figure 1.10 GoofyCoin coin. Shown here is a coin that’s been created (bottom) and spent twice
(middle and top).

To summarize, the rules of GoofyCoin are:

e Goofy can create new coins by simply signing a statement that he’s making a new coin with a
unique coin ID.

e Whoever owns a coin can pass it on to someone else by signing a statement that saying, “Pass
on this coin to X” (where X is specified as a public key)

e Anyone can verify the validity of a coin by following the chain of hash pointers back to its
creation by Goofy, verifying all of the signatures along the way.

Of course, there’s a fundamental security problem with GoofyCoin. Let’s say Alice passed her coin on
to Bob by sending her signed statement to Bob but didn’t tell anyone else. She could create another
signed statement that pays the very same coin to Chuck. To Chuck, it would appear that it is perfectly
valid transaction, and now he’s the owner of the coin. Bob and Chuck would both have valid-looking
claims to be the owner of this coin. This is called a double-spending attack — Alice is spending the
same coin twice. Intuitively, we know coins are not supposed to work that way.

In fact, double-spending attacks are one of the key problems that any cryptocurrency has to solve.
GoofyCoin does not solve the double-spending attack and therefore it’s not secure. GoofyCoin is
simple, and its mechanism for transferring coins is actually very similar to Bitcoin, but because it is
insecure it won’t cut it as a cryptocurrency.

ScroogeCoin

To solve the double-spending problem, we’ll design another cryptocurrency, which we’ll call
ScroogeCoin. ScroogeCoin is built off of GoofyCoin, but it’s a bit more complicated in terms of data
structures.
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The first key idea is that a designated entity called Scrooge publishes an append-only ledger
containing the history of all the transactions that have happened. The append-only property ensures
that any data written to this ledger will remain forever. If the ledger is truly append-only, we can use
it to defend against double-spending by requiring all transactions to be written the ledger before they
are accepted. That way, it will be publicly visible if coins were previously sent to a different owner.

To implement this append-only functionality, Scrooge can build a block chain (the data structure we
discussed before) which he will digitally sign. It’s a series of data blocks, each with one transaction in it
(in practice, as an optimization, we’d really put multiple transactions into the same block, as Bitcoin
does.) Each block has the ID of a transaction, the transaction’s contents, and a hash pointer to the
previous block. Scrooge digitally signs the final hash pointer, which binds all of the data in this entire
structure, and publishes the signature along with the block chain.

prev: H(") prev: H(") prev: H(')
transiD: 71 transiD: 72 transiD: 73
trans | trans trans

Figure 1.11 ScroogeCoin block chain.

In ScroogeCoin a transaction only counts if it is in the block chain signed by Scrooge. Anybody can
verify that a transaction was endorsed by Scrooge by checking Scrooge’s signature on the block that it
appears in. Scrooge makes sure that he doesn’t endorse a transaction that attempts to double-spend
an already spent coin.

Why do we need a block chain with hash pointers in addition to having Scrooge sign each block? This
ensures the append-only property. If Scrooge tries to add or remove a transaction to the history, or
change an existing transaction, it will affect all of the following blocks because of the hash pointers. As
long as someone is monitoring the latest hash pointer published by Scrooge, the change will be
obvious and easy to catch. In a system where Scrooge signed blocks individually, you’d have to keep
track of every single signature Scrooge ever issued. A block chain makes it very easy for any two
individuals to verify that they have observed the exact same history of transactions signed by Scrooge.

In ScroogeCoin, there are two kinds of transactions. The first kind is CreateCoins, which is just like the
operation Goofy could do in GoofyCoin that makes a new coin. With ScroogeCoin, we’ll extend the
semantics a bit to allow multiple coins to be created in one transaction.
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transID: 73  type:CreateCoins

coins created

num value recipient
0 3.2 0x... l«————— coinlD 73(0)
1 1.4 0x... l«——— coinlD 73(1)
2 71 0x... l«——— coinlD 73(2)

Figure 1.12 CreateCoins transaction. This CreateCoins transaction creates multiple coins. Each coin
has a serial number within the transaction. Each coin also has a value; it’s worth a certain number of
scroogecoins. Finally, each coin has a recipient, which is a public key that gets the coin when it’s
created. So CreateCoins creates a bunch of new coins with different values and assigns them to
people as initial owners. We refer to coins by CoinIDs. A CoinID is a combination of a transaction ID
and the coin’s serial number within that transaction.

A CreateCoins transaction is always valid by definition if it is signed by Scrooge. We won’t worry about

when Scrooge is entitled to create coins or how many, just like we didn’t worry in GoofyCoin about
how Goofy is chosen as the entity allowed to create coins.

The second kind of transaction is PayCoins. It consumes some coins, that is, destroys them, and
creates new coins of the same total value. The new coins might belong to different people (public
keys). This transaction has to be signed by everyone who’s paying in a coin. So if you’re the owner of
one of the coins that’s going to be consumed in this transaction, then you need to digitally sign the
transaction to say that you’re really okay with spending this coin.

The rules of ScroogeCoin say that PayCoins transaction is valid if four things are true:

The consumed coins are valid, that is, they really were created in previous transactions.
The consumed coins were not already consumed in some previous transaction. That is, that
this is not a double-spend.

e The total value of the coins that come out of this transaction is equal to the total value of the
coins that went in. That is, only Scrooge can create new value.

e The transaction is validly signed by the owners of all of the consumed coins.
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transiD: 73 type:PayCoins

consumed coinlDs:
68(1), 42(0), 72(3)

coins created

num value recipient
0 3.2 0x...
1 1.4 0x...
2 71 0x...
signatures

Figure 1.13 A PayCoins Transaction.

If all of those conditions are met, then this PayCoins transaction is valid and Scrooge will accept it.
He’ll write it into the history by appending it to the block chain, after which everyone can see that this
transaction has happened. It is only at this point that the participants can accept that the transaction
has actually occurred. Until it is published, it might be preempted by a douple-spending transaction
even if it is otherwise valid by the first three conditions.

Coins in this system are immutable — they are never changed, subdivided, or combined. Each coin is
created, once, in one transaction and later consumed in some other transaction. But we can get the
same effect as being able to subdivide or combine coins by using transactions. For example, to
subdivide a coin, Alice create a new transaction that consumes that one coin, and then produces two
new coins of the same total value. Those two new coins could be assigned back to her. So although
coins are immutable in this system, it has all the flexibility of a system that didn’t have immutable
coins.

Now, we come to the core problem with ScroogeCoin. ScroogeCoin will work in the sense that people
can see which coins are valid. It prevents double-spending, because everyone can look into the block
chain and see that all of the transactions are valid and that every coin is consumed only once. But the
problem is Scrooge — he has too much influence. He can’t create fake transactions, because he can’t
forge other people’s signatures. But he could stop endorsing transactions from some users, denying
them service and making their coins unspendable. If Scrooge is greedy (as his cartoon namesake
suggests) he could refuse to publish transactions unless they transfer some mandated transaction fee
to him. Scrooge can also of course create as many new coins for himself as he wants. Or Scrooge
could get bored of the whole system and stop updating the block chain completely.
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The problem here is centralization. Although Scrooge is happy with this system, we, as users of it,
might not be. While ScroogeCoin may seem like an unrealistic proposal, much of the early research on
cryptosystems assumed there would indeed be some central trusted authority, typically referred to as
a bank. After all, most real-world currencies do have a trusted issuer (typically a government mint)
responsible for creating currency and determining which notes are valid. However, cryptocurrencies
with a central authority largely failed to take off in practice. There are many reasons for this, but in
hindsight it appears that it’s difficult to get people to accept a cryptocurrency with a centralized
authority.

Therefore, the central technical challenge that we need to solve in order to improve on ScroogeCoin
and create a workable system is: can we descroogify the system? That is, can we get rid of that
centralized Scrooge figure? Can we have a cryptocurrency that operates like ScroogeCoin in many
ways, but doesn’t have any central trusted authority?

To do that, we need to figure out how all users can agree upon a single published block chain as the
history of which transactions have happened. They must all agree on which transactions are valid, and
which transactions have actually occurred. They also need to be able to assign IDs to things in a
decentralized way. Finally, the minting of new coins needs to be controlled in a decentralized way. If
we can solve all of those problems, then we can build a currency that would be like ScroogeCoin but
without a centralized party. In fact, this would be a system very much like Bitcoin.

Further Reading

Steven Levy’s Crypto is an enjoyable, non-technical look at the development of modern cryptography
and the people behind it:

Levy, Steven. Crypto: How the Code Rebels Beat the Government--Saving Privacy in the Digital Age.
Penguin, 2001.

Modern cryptography is a rather theoretical field. Cryptographers use mathematics to define
primitives, protocols, and their desired security properties in a formal way, and to prove them secure
based on widely accepted assumptions about the computational hardness of specific mathematical
tasks. In this chapter we’ve used intuitive language to discuss hash functions and digital signatures.
For the reader interested in exploring these and other cryptographic concepts in a more mathematical
way and in greater detail, we refer you to:

Katz, Jonathan, and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014.

For an introduction to applied cryptography, see:

Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering: design principles
and practical applications. John Wiley & Sons, 2012.
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Perusing the NIST standard that defines SHA-2 is a good way to get an intuition for what cryptographic
standards look like:

FIPS PUB 180-4, Secure Hash Standards, Federal Information Processing Standards Publication.
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg,
MD, 2008.

Finally, here’s the paper describing the standardized version of the ECDSA signature algorithm.

Johnson, Don, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algorithm
(ECDSA). International Journal of Information Security 1.1 (2001): 36-63.

Exercises

1. Authenticated Data Structures. You are designing SecureBox, an authenticated online file storage
system. For simplicity, there is only a single folder. Users must be able to add, edit, delete, and
retrieve files, and to list the folder contents. When a user retrieves a file, SecureBox must provide a
proof that the file hasn’t been tampered with since its last update. If a file with the given name
doesn’t exist, the server must report that — again with a proof.

We want to minimize the size of these proofs, the time complexity of verifying them, and the size of
the digest that the user must store between operations. (Naturally, to be able to verify proofs, users
must at all times store some nonzero amount of state derived from the folder contents. Other than
this digest the user has no memory of the contents of the files she added.)

Here’s a naive approach. The user’s digest is a hash of the entire folder contents, and proofs are
copies of the entire folder contents. This results in a small digest but large proofs and long verification
times. Besides, before executing add/delete/edit operations, the user must retrieve the entire folder
so that she can recompute the digest.

Alternatively, the digest could consist of a separate hash for each file, and each file would be its own
proof. The downside of this approach is that it requires digest space that is linear in the number of
files in the system.

Can you devise a protocol where proof size, verification time, and digest size are all sublinear? You
might need a sub-protocol that involves some amount of two-way communication for the user to be
able to update her digest when she executes and add, delete, or edit.

Hint: use the Merkle tree idea from Section 1.2.

2. Birthday Attack. Let H be an ideal hash function that produces an n-bit output. By ideal, we mean
that as far as we can tell, each hash value is independent and uniformly distributed in {0,1}". Trivially,
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we can go through 2" + 1 different values and we are guaranteed to find a collision. If we're
constrained for space, we can just store 1 input-output pair and keep trying new inputs until we hit
the same output again. This has time complexity O(2"), but has O(1) space complexity. Alternatively,
we could compute the hashes of about O(2"?) different inputs and store all the input-output pairs. As
we saw in the text, there’s a good chance that some two of those outputs would collide (the “birthday
paradox”). This shows that we can achieve a time-space trade-off: 0(2"?) time and O(2"?) space.
1. (Easy) Show that the time-space trade-off is parameterizable: we can achieve any space
complexity between O(1) and 0(2"?) with a corresponding decrease in time complexity.
2. (Very hard) Is there an attack for which the product of time and space complexity is o(2")?
[Recall the little oh notation.]

3. Hash function properties (again). Let H be a hash function that is both hiding and puzzle-friendly.

Consider G(z) = H(z) Il z,,, where z_ represents the last bit of z. Show that G is puzzle-friendly but not
hiding.

4. Randomness. In ScroogeCoin, suppose Mallory tries generating (sk, pk) pairs until her secret key
matches someone else’s. What will she be able to do? How long will it take before she succeeds, on
average? What if Alice’s random number generator has a bug and her key generation procedure
produces only 1,000 distinct pairs?

50



Chapter 2: How Bitcoin Achieves Decentralization

In this chapter, we will discuss decentralization in Bitcoin. In the first chapter we looked at the crypto
basics that underlie Bitcoin and we ended with a simple currency that we called ScroogeCoin.
ScroogeCoin achieves a lot of what we want in a ledger-based cryptocurrency, but it has one glaring
problem — it relies upon the centralized authority called Scrooge. We ended with the question of
how to decentralize, or de-Scrooge-ify, this currency, and answering that question will be the focus of
this chapter.

As you read through this chapter, take note that the mechanism through which Bitcoin achieves
decentralization is not purely technical, but it’s a combination of technical methods and clever
incentive engineering. At the end of this chapter you should have a really good appreciation for how
this decentralization happens, and more generally how Bitcoin works and why it is secure.

2.1 Centralization vs. Decentralization

Decentralization is an important concept that is not unique to Bitcoin. The notion of competing
paradigms of centralization versus decentralization arises in a variety of different digital technologies.
In order to best understand how it plays out in Bitcoin, it is useful to understand the central conflict —
the tension between these two paradigms — in a variety of other contexts.

On the one hand we have the Internet, a famously decentralized system that has historically
competed with and prevailed against “walled-garden” alternatives like AOL’s and CompuServe’s
information services. Then there’s email, which at its core is a decentralized system based on the
Simple Mail Transfer Protocol (SMTP), an open standard. While it does have competition from
proprietary messaging systems like Facebook or LinkedIn mail, email has managed to remain the
default for person-to-person communication online. In the case of instant messaging and text
messaging, we have a hybrid model that can’t be categorically described as centralized or
decentralized. Finally there’s social networking: despite numerous concerted efforts by hobbyists,
developers and entrepreneurs to create alternatives to the dominant centralized model, centralized
systems like Facebook and LinkedIn still dominate this space. In fact, this conflict long predates the
digital era and we see a similar struggle between the two models in the history of telephony, radio,
television, and film.

Decentralization is not all or nothing; almost no system is purely decentralized or purely centralized.
For example, email is fundamentally a decentralized system based on a standardized protocol, SMTP,
and anyone who wishes can operate an email server of their own. Yet, what has happened in the
market is that a small number of centralized webmail providers have become dominant. Similarly,
while the Bitcoin protocol is decentralized, services like Bitcoin exchanges, where you can convert
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Bitcoin into other currencies, and wallet software, or software that allows people to manage their
bitcoins may be centralized or decentralized to varying degrees.

With this in mind, let’s break down the question of how the Bitcoin protocol achieves decentralization
into five more specific questions:

Who maintains the ledger of transactions?

Who has authority over which transactions are valid?
Who creates new bitcoins?

Who determines how the rules of the system change?
How do bitcoins acquire exchange value?

e wnN e

The first three questions reflect the technical details of the Bitcoin protocol, and it is these questions
that will be the focus of this chapter.

Different aspects of Bitcoin fall on different points on the centralization/decentralization spectrum.
The peer-to-peer network is close to purely decentralized since anybody can run a Bitcoin node and
there’s a fairly low barrier to entry. You can go online and easily download a Bitcoin client and run a
node on your laptop or your PC. Currently there are several thousand such nodes. Bitcoin mining,
which we’ll study later in this chapter, is technically also open to anyone, but it requires a very high
capital cost. Because of this there has been a high degree of centralization, or a concentration of
power, in the Bitcoin mining ecosystem. Many in the Bitcoin community see this as quite undesirable.
A third aspect is updates to the software that Bitcoin nodes run, and this has a bearing on how and
when the rules of the system change. One can imagine that there are numerous interoperable
implementations of the protocol, as with email. But in practice, most nodes run the reference
implementation, and its developers are trusted by the community and have a lot of power.

2.2 Distributed consensus

We've discussed, in a generic manner, centralization and decentralization. Let’s now examine
decentralization in Bitcoin at a more technical level. A key term that will come up throughout this
discussion is consensus, and specifically, distributed consensus. The key technical problem to solve in
building a distributed e-cash system is achieving distributed consensus. Intuitively, you can think of
our goal as decentralizing ScroogeCoin, the hypothetical currency that we saw in the first chapter.

Distributed consensus has various applications, and it has been studied for decades in computer
science. The traditional motivating application is reliability in distributed systems. Imagine you’re in
charge of the backend for a large social networking company like Facebook. Systems of this sort
typically have thousands or even millions of servers, which together form a massive distributed
database that records all of the actions that happen in the system. Each piece of information must be
recorded on several different nodes in this backend, and the nodes must be in sync about the overall



state of the system.

The implications of having a distributed consensus protocol reach far beyond this traditional
application. If we had such a protocol, we could use it to build a massive, distributed key-value store,
that maps arbitrary keys, or names, to arbitrary values. A distributed key-value store, in turn, would
enable many applications. For example, we could use it to build a distributive domain name system,
which is simply a mapping between human understandable domain names to IP addresses. We could
build a public key directory, which is a mapping between email addresses (or some other form of
real-world identity) to public keys.

That’s the intuition of what distributed consensus is, but it is useful to provide a technical definition as
this will help us determine whether or not a given protocol meets the requirements.

Distributed consensus protocol. There are n nodes that each have an input value. Some of these
nodes are faulty or malicious. A distributed consensus protocol has the following two properties:
e It must terminate with all honest nodes in agreement on the value
e The value must have been generated by an honest node

What does this mean in the context of Bitcoin? To understand how distributed consensus could work
in Bitcoin, remember that Bitcoin is a peer-to-peer system. When Alice wants to pay Bob, what she
actually does is broadcast a transaction to all of the Bitcoin nodes that comprise the peer-to-peer
network. See Figure 2.1.

o signed by Alice
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Figure 2.1 Broadcasting a transaction In order to pay Bob, Alice broadcasts the transaction to the
entire Bitcoin peer-to-peer network.

Incidentally, you may have noticed that Alice broadcasts the transaction to all the Bitcoin peer-to-peer
nodes, but Bob’s computer is nowhere in this picture. It’s of course possible that Bob is running one of
the nodes in the peer-to-peer network. In fact, if he wants to be notified that this transaction did in
fact happen and that he got paid, running a node might be a good idea. Nevertheless, there is no
requirement that Bob be listening on the network; running a node is not necessary for Bob to receive
the funds. The bitcoins will be his whether or not he’s operating a node on the network.

What exactly is it that the nodes might want to reach consensus on in the Bitcoin network? Given that
a variety of users are broadcasting these transactions to the network, the nodes must agree on
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exactly which transactions were broadcast and the order in which these transactions happened. This
will result in a single, global ledger for the system. Recall that in ScroogeCoin, for optimization, we put
transactions into blocks. Similarly, in Bitcoin, we do consensus on a block-by-block basis.

So at any given point, all the nodes in the peer-to-peer network have a ledger consisting of a
sequence of blocks, each containing a list of transactions, that they’ve reached consensus on.
Additionally, each node has a pool of outstanding transactions that it has heard about but have not
yet been included on the block chain. For these transactions, consensus has not yet happened, and so
by definition, each node might have a slightly different version of the outstanding transaction pool. In
practice, this occurs because the peer-to-peer network is not perfect, so some nodes may have heard
about a transaction that other nodes have not heard about.

How exactly do nodes come to consensus on a block? One way to do this: at regular intervals, say
every 10 minutes, every node in the system proposes its own outstanding transaction pool to be the
next block. Then the nodes execute some consensus protocol, where each node’s input is its own
proposed block. Now, some nodes may be malicious and put invalid transactions into their blocks, but
we might assume that other nodes will be honest. If the consensus protocol succeeds, a valid block
will be selected as the output. Even if the selected block was proposed by only one node, it’s a valid
output as long as the block is valid. Now there may be some valid outstanding transaction that did not
get included in the block, but this is not a problem. If some transaction somehow didn’t make it into
this particular block, it could just wait and get into the next block.

The approach in the previous paragraph has some similarities to how Bitcoin works, but it’s not quite
how it works. There are a number of technical problems with this approach. Firstly, consensus in
general is a hard problem since nodes might crash or be outright malicious. Secondly, and specifically
in the Bitcoin context, the network is highly imperfect. It's a peer-to-peer system, and not all pairs of
nodes are connected to each other. There could be faults in the network because of poor Internet
connectivity for example, and thus running a consensus protocol in which all nodes must participate is
not really possible. Finally, there’s a lot of latency in the system because it’s distributed all over the
Internet.

Sidebar: The Bitcoin protocol must reach consensus in the face of two types of obstacles:
imperfections in the network, such as latency and nodes crashing, as well as deliberate attempts by
some nodes to subvert the process.

One particular consequence of this high latency is that there is no notion of global time. What this
means is that not all nodes can agree to a common ordering of events simply based on observing
timestamps. So the consensus protocol cannot contain instructions of the form, “The node that sent
the first message in step 1 must do X in step 2.” This simply will not work because not all nodes will
agree on which message was sent first in the step 1 of the protocol.

Impossibility results. The lack of global time heavily constrains the set of algorithms that can be used
in the consensus protocols. In fact, because of these constraints, much of the literature on distributed
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consensus is somewhat pessimistic, and many impossibility results have been proven. One very well
known impossibility result concerns the Byzantine Generals Problem. In this classic problem, the
Byzantine army is separated into divisions, each commanded by a general. The generals communicate
by messenger in order to devise a joint plan of action. Some generals may be traitors and may
intentionally try to subvert the process so that the loyal generals cannot arrive at a unified plan. The
goal of this problem is for all of the loyal generals to arrive at the same plan without the traitorous
generals being able to cause them to adopt a bad plan. It has been proven that this is impossible to
achieve if one-third or more of the generals are traitors.

A much more subtle impossibility result, known for the names of the authors who first proved it, is
called the Fischer-Lynch-Paterson impossibility result. Under some conditions, which include the
nodes acting in a deterministic manner, they proved that consensus is impossible with even a single
faulty process.

Despite these impossibility results, there are some consensus protocols in the literature. One of the
better known among these protocols is Paxos. Paxos makes certain compromises. On the one hand, it
never produces an inconsistent result. On the other hand, it accepts the trade-off that under certain
conditions, albeit rare ones, the protocol can get stuck and fail to make any progress.

Breaking traditional assumptions. But there’s good news: these impossibility results were proven in a
very specific model. They were intended to study distributed databases, and this model doesn’t carry
over very well to the Bitcoin setting because Bitcoin violates many of the assumptions built into the
models. In a way, the results tell us more about the model than they do about the problem of
distributed consensus.

Ironically, with the current state of research, consensus in Bitcoin works better in practice than in
theory. That is, we observe consensus working, but have not developed the theory to fully explain
why it works. But developing such a theory is important as it can help us predict unforeseen attacks
and problems, and only when we have a strong theoretical understanding of how Bitcoin consensus
works will we have strong guarantees Bitcoin’s security and stability.

What are the assumptions in traditional models for consensus that Bitcoin violates? First, it introduces
the idea of incentives, which is novel for a distributed consensus protocol. This is only possible in
Bitcoin because it is a currency and therefore has a natural mechanism to incentivize participants to
act honestly. So Bitcoin doesn’t quite solve the distributed consensus problem in a general sense, but
it solves it in the specific context of a currency system.

Second, Bitcoin embraces the notion of randomness. As we will see in the next two sections, Bitcoin’s
consensus algorithm relies heavily on randomization. Also, it does away with the notion of a specific
starting point and ending point for consensus. Instead, consensus happens over a long period of time,
about an hour in the practical system. But even at the end of that time, nodes can’t be certain that
any particular transaction or a block has made it into the ledger. Instead, as time goes on, the
probability that your view of any block will match the eventual consensus view increases, and the
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probability that the views will diverge goes down exponentially. These differences in the model are
key to how Bitcoin gets around the traditional impossibility results for distributed consensus
protocols.

2.3 Consensus without identity using a block chain

In this section we’ll study the technical details of Bitcoin’s consensus algorithm. Recall that Bitcoin
nodes do not have persistent, long-term identities. This is another difference from traditional
distributed consensus algorithms. One reason for this lack of identities is that in a peer-to-peer
system, there is no central authority to assign identities to participants and verify that they’re not
creating new nodes at will. The technical term for this is a Sybil attack. Sybils are just copies of nodes
that a malicious adversary can create to look like there are a lot of different participants, when in fact
all those pseudo-participants are really controlled by the same adversary. The other reason is that
pseudonymity is inherently a goal of Bitcoin. Even if it were possible or easy to establish identities for
all nodes or all participants, we wouldn’t necessarily want to do that. Although Bitcoin doesn’t give
strong anonymity guarantees in that the different transactions that one makes can often be linked
together, it does have the property that nobody is forced to reveal their real-life identity, like their
name or IP address, in order to participate. And that’s an important property and a central feature of
Bitcoin’s design.

If nodes did have identities, the design would be easier. For starters, identities would allow us to put
in the protocol instructions of the form, “Now the node with the lowest numerical ID should take
some step.” Without identities, the set of possible instructions is more constrained. But a much more
serious reason for nodes to have identities is for security. If nodes were identified and it weren’t trivial
to create new node identities, then we could make assumptions on the number of nodes that are
malicious, and we could derive security properties out of that. For both of these reasons, the lack of
identities introduces difficulties for the consensus protocol in Bitcoin.

We can compensate for the lack of identities by making a weaker assumption. Suppose there is
somehow an ability to pick a random node in the system. A good motivating analogy for this is a
lottery or a raffle, or any number of real-life systems where it’s hard to track people, give them
identities and verify those identities. What we do in those contexts is to give out tokens or tickets or
something similar. That enables us to later pick a random token ID, and call upon the owner of that ID.
So for the moment, take a leap of faith and assume that it is possible to pick a random node from the
Bitcoin network in this manner. Further assume, for the moment, that this token generation and
distribution algorithm is sufficiently smart so that if the adversary is going to try to create a lot of Sybil
nodes, all of those Sybils together will get only one token. This means the adversary is not able to
multiply his power by creating new nodes. If you think this is a lot to assume, don’t worry. Later in this
chapter, we’ll remove these assumptions and show in detail how properties equivalent to these are
realized in Bitcoin.

56



Implicit Consensus. This assumption of random node selection makes possible something called
implicit consensus. There are multiple rounds in our protocol, each corresponding to a different block
in the block chain. In each round, a random node is somehow selected, and this node gets to propose
the next block in the chain. There is no consensus algorithm for selecting the block, and no voting of
any kind. The chosen node unilaterally proposes what the next block in the block chain will be. But
what if that node is malicious? Well, there is a process for handling that, but it is an implicit one.
Other nodes will implicitly accept or reject that block by choosing whether or not to build on top of it.
If they accept that block, they will signal their acceptance by extending the block chain including the
accepted block. By contrast, if they reject that block, they will extend the chain by ignoring that block,
and building on top of whichever is the previous block that they accepted. Recall that each block
contains a hash of the block that it extends. This is the technical mechanism that allows nodes to
signal which block it is that they are extending.

Bitcoin consensus algorithm (simplified)

This algorithm is simplified in that it assumes the ability to select a random node in a manner that is
not vulnerable to Sybil attacks.

1. New transactions are broadcast to all nodes

2. Each node collects new transactions into a block

3. In each round a random node gets to broadcast its block

4. Other nodes accept the block only if all transactions in it are valid (unspent, valid
sighatures)

5. Nodes express their acceptance of the block by including its hash in the next block they

create

Let’s now try to understand why this consensus algorithm works. To do this, let’s consider how a
malicious adversary — who we’ll call Alice — may be able to subvert this process.

Stealing Bitcoins. Can Alice simply steal bitcoins belonging to another user at an address she doesn’t
control? No. Even if it is Alice’s turn to propose the next block in the chain, she cannot steal other
users’ bitcoins. Doing so would require Alice to create a valid transaction that spends that coin. This
would require Alice to forge the owners’ signatures which she cannot do if a secure digital signature
scheme is used. So as long as the underlying cryptography is solid, she’s not able to simply steal
bitcoins.

Denial of service attack. Let’s consider another attack. Say Alice really dislikes some other user Bob.
Alice can then decide that she will not include any transactions originating from Bob’s address in any
block that she proposes to get onto the block chain. In other words, she’s denying service to Bob.
While this is a valid attack that Alice can try to mount, luckily it’s nothing more than a minor
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annoyance. If Bob’s transaction doesn’t make it into the next block that Alice proposes, he will just
wait until an honest node gets the chance to propose a block and then his transaction will get into
that block. So that’s not really a good attack either.

Double-spend attack. Alice may try to launch a double-spend attack. To understand how that works,
let’s assume that Alice is a customer of some online merchant or website run by Bob, who provides
some online service in exchange for payment in bitcoins. Let’s say Bob’s service allows the download
of some software. So here’s how a double-spend attack might work. Alice adds an item to her
shopping cart on Bob’s website and the server requests payment. Then Alice creates a Bitcoin
transaction from her address to Bob’s and broadcasts it to the network. Let’s say that some honest
node creates the next block, and includes this transaction in that block. So there is now a block that
was created by an honest node that contains a transaction that represents a payment from Alice to
the merchant Bob.

Recall that a transaction is a data structure that contains Alice’s signature, an instruction to pay to
Bob’s public key, and a hash. This hash represents a pointer to a previous transaction output that Alice
received and is now spending. That pointer must reference a transaction that was included in some
previous block in the consensus chain.

Note, by the way, that there are two different types of hash pointers here that can easily be confused.
Blocks include a hash pointer to the previous block that they’re extending. Transactions include one or
more hash pointers to previous transaction outputs that are being redeemed.

Let’s return to how Alice can launch a double spend attack. The latest block was generated by an
honest node and includes a transaction in which Alice pays Bob for the software download. Upon
seeing this transaction included in the block chain, Bob concludes that Alice has paid him and allows
Alice to download the software. Suppose the next random node that is selected in the next round
happens to be controlled by Alice. Now since Alice gets to propose the next block, she could propose
a block that ignores the block that contains the payment to Bob and instead contains a pointer to the
previous block. Furthermore, in the block that she proposes, Alice includes a transaction that transfers
the very coins that she was sending to Bob to a different address that she herself controls. This is a
classic double-spend pattern. Since the two transactions spend the same coins, only one of them can
be included in the block chain. If Alice succeeds in including the payment to her own address in the
block chain, then the transaction in which she pays Bob is useless as it can never be included later in
the block chain.
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Figure 2.2 A double spend attempt. Alice creates two transactions: one in which she sends Bob
Bitcoins, and a second in which she double spends those Bitcoins by sending them to a different
address that she controls. As they spend the same Bitcoins, only one of these transactions can be
included in the block chain. The arrows are pointers from one block to the previous block that it
extends including a hash of that previous block within its own contents. C, is used to denote a coin
owned by Alice.

And how do we know if this double spend attempt is going to succeed or not? Well, that depends on
which block will ultimately end up on the long-term consensus chain — the one with the Alice — Bob
transaction or the one with the Alice — Alice transaction. What determines which block will be
included? Honest nodes follow the policy of extending the longest valid branch, so which branch will
they extend? There is no right answer! At this point, the two branches are the same length — they
only differ in the last block and both of these blocks are valid. The node that chooses the next block
then may decide to build upon either one of them, and this choice will largely determine whether or
not the double-spend succeeds.

A subtle point: from a moral point of view, there is a clear difference between the block containing
the transaction that pays Bob and the block containing the transaction in which Alice double spends
those coins to her own address. But this distinction is only based on our knowledge of the story that
Alice first paid Bob and then attempted to double spend. From a technological point of view,
however, these two transactions are completely identical and both blocks are equally valid. The nodes
that are looking at this really have no way to tell which is the morally legitimate transaction.

In practice, nodes often follow a heuristic of extending the block that they first heard about on the
peer-to-peer network. But it’s not a solid rule. And in any case, because of network latency, it could
easily be that the block that a node first heard about is actually the one that was created second. So
there is at least some chance that the next node that gets to propose a block will extend the block
containing the double spend. Alice could further try to increase the likelihood of this happening by
bribing the next node to do so. If the next node does build on the double-spend block for whatever
reason, then this chain will now be longer than the one that includes the transaction to Bob. At this



point, the next honest node is much more likely to continue to build on this chain since it is longer.
This process will continue, and it will become increasingly likely that the block containing the
double-spend will be part of the long-term consensus chain. The block containing the transaction to
Bob, on the other hand, gets completely ignored by the network, and this is now called an orphan
block.

Let’s now reconsider this whole situation from Bob-the-merchant’s point of view. Understanding how
Bob can protect himself from this double-spending attack is a key part of understanding Bitcoin
security. When Alice broadcasts the transaction that represents her payment to Bob, Bob is listening
on the network and hears about this transaction even before the next block is created. If Bob was
even more foolhardy than we previously described, he can complete the checkout process on the
website and allow Alice to download the software right at that moment. That’s called a
zero-confirmation transaction. This leads to an even more basic double spend attack than the one
described before. Previously, for the double-spend attack to occur, we had to assume that a malicious
actor controls the node that proposes the next block. But if Bob allows Alice to download the
software before the transaction receives even a single confirmation on the block chain, then Alice can
immediately broadcast a double-spend transaction, and an honest node may include it in the next
block instead of the transaction that pays Bob.

1 confirmation 3 confirmations

C,—~B

¢, A | double-spend
attempt

Hear about CA — B transaction
0 confirmations

Figure 2.3 Bob the Merchant’s view. This is what Alice’s double-spend attempt looks like from Bob
the merchant’s viewpoint. In order to protect himself from this attack, Bob should wait until the
transaction with which Alice pays him is included in the block chain and has several confirmations.

On the other hand, a cautious merchant would not release the software to Alice even after the
transaction was included in one block, and would continue to wait. If Bob sees that Alice successfully
launches a double-spend attack, he realizes that the block containing Alice’s payment to him has been
orphaned. He should abandon the transaction and not let Alice download the software. Instead, if it
happens that despite the double-spend attempt, the next several nodes build on the block with the
Alice — Bob transaction, then Bob gains confidence that this transaction will be on the long-term
consensus chain.
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In general, the more confirmations a transaction gets, the higher the probability that it is going to end
up on the long-term consensus chain. Recall that honest nodes’ behavior is always to extend the
longest valid branch that they see. The chance that the shorter branch with the double spend will
catch up to the longer branch becomes increasingly tiny as it grows longer than any other branch. This
is especially true if only a minority of the nodes are malicious — for a shorter branch to catch up,
several malicious nodes would have to be picked in close succession.

In fact, the double-spend probability decreases exponentially with the number of confirmations. So, if
the transaction that you’re interested in has received k confirmations, then the probability that a
double-spend transaction will end up on the long-term consensus chain goes down exponentially as a
function of k. The most common heuristic that’s used in the Bitcoin ecosystem is to wait for six
confirmations. There is nothing really special about the number six. It’s just a good tradeoff between
the amount of time you have to wait and your guarantee that the transaction you’re interested in
ends up on the consensus block chain.

To recap, protection against invalid transactions is entirely cryptographic. But it is enforced by
consensus, which means that if a node does attempt to include a cryptographically invalid transaction,
then the only reason that transaction won’t end up in the long-term consensus chain is because a
majority of the nodes are honest and won’t include an invalid transaction in the block chain. On the
other hand, protection against double-spending is purely by consensus. Cryptography has nothing to
say about this, and two transactions that represent a double-spend attempt are both valid from a
cryptographic perspective. But it’s the consensus that determines which one will end up on the
long-term consensus chain. And finally, you’re never 100 percent sure that a transaction you’re
interested in is on the consensus branch. But, this exponential probability guarantee is rather good.
After about six transactions, there’s virtually no chance that you’re going to go wrong.

2.4 Incentives and proof of work

In the previous section, we got a basic look at Bitcoin’s consensus algorithm and a good intuition for
why we believe that it’s secure. But recall from the beginning of the chapter that Bitcoin’s
decentralization is partly a technical mechanism and partly clever incentive engineering. So far we’ve
mostly looked at the technical mechanism. Now let’s talk about the incentive engineering that
happens in Bitcoin.

We asked you to take a leap of faith earlier in assuming that we’re able to pick a random node and,
perhaps more problematically, that at least 50 percent of the time, this process will pick an honest
node. This assumption of honesty is particularly problematic if there are financial incentives for
participants to subvert the process, in which case we can’t really assume that a node will be honest.
The question then becomes: can we give nodes an incentive for behaving honestly?

Consider again the double-spend attempt after one confirmation (Figure 2.3). Can we penalize,
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somehow, the node that created the block with the double-spend transaction? Well, not really. As we
mentioned earlier, it’s hard to know which is the morally legitimate transaction. But even if we did,
it’s still hard to punish nodes since they don’t have identities. So instead, let’s flip the question around
and ask, can we reward each of the nodes that created the blocks that did end up on the long-term
consensus chain? Well, again, since those nodes don’t reveal their real-world identities, we can’t quite
mail them cash to their home addresses. If only there were some sort of digital currency that we could
use instead... you can probably see where this is going. We’re going to use bitcoins to incentivize the
nodes that created these blocks.

Let’s pause for a moment. Everything that we’ve described so far is just an abstract algorithm for
achieving distributed consensus and is not specific to the application. Now we’re going to break out of
that model, and we’re going to use the fact that the application we’re building through this
distributed consensus process is in fact a currency. Specifically, we’re going to incentivize nodes to
behave honestly by paying them in units of this currency.

Block Reward. How is this done? There are two separate incentive mechanisms in Bitcoin. The first is
the block reward. According to the rules of Bitcoin, the node that creates a block gets to include a
special transaction in that block. This transaction is a coin-creation transaction, analogous to
CreateCoins in Scroogecoin, and the node can also choose the recipient address of this transaction. Of
course that node will typically choose an address belonging to itself. You can think of this as a
payment to the node in exchange for the service of creating a block on the consensus chain.

At the time of this writing, the value of the block reward is fixed at 25 Bitcoins. But it actually halves
every 210,000 blocks. Based on the rate of block creation that we will see shortly, this means that the
rate drops roughly every four years. We’re now in the second period. For the first four years of
Bitcoin’s existence, the block reward was 50 bitcoins; now it’s 25. And it’s going to keep halving. This
has some interesting consequences, which we will see shortly.

You may be wondering why the block reward incentivizes honest behavior. It may appear, based on
what what we’ve said so far, that this node gets the block reward regardless of whether it proposes a
valid block or behaves maliciously. But this is not true! Think about it — how will this node “collect” its
reward? That will only happen if the block in question ends up on the long-term consensus branch
because just like every other transaction, the coin-creation transaction will only be accepted by other
nodes if it ends up on the consensus chain. That’s the key idea behind this incentive mechanism. It's a
very subtle but very powerful trick. It incentivizes nodes to behave in whatever way they believe will
get other nodes to extend their blocks. So if most of the network is following the longest valid branch
rule, it incentivizes all nodes to continue to follow that rule. That’s Bitcoin’s first incentive mechanism.

We mentioned that every 210,000 blocks (or approximately four years), the block reward is cut in half.
In Figure 2.4, the slope of this curve is going to keep halving. This is a geometric series, and you might
know that it means that there is a finite sum. It works out to a total of 21 million bitcoins.
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Figure 2.4 The block reward is cut in half every four years limiting the total supply of bitcoins to 21
million.

It is important to note that this is the only way in which new bitcoins are allowed to be created. There
is no other coin generation mechanism, and that’s why 21 million is a final and total number (as the
rules stand now, at least) for how many bitcoins there can ever be. This new block creation reward is
actually going to run out in 2140, as things stand now. Does that mean that the system will stop
working in 2140 and become insecure because nodes no longer have the incentive to behave
honestly? Not quite. The block reward is only the first of two incentive mechanisms in Bitcoin.

Transaction fees The second incentive mechanism is called the transaction fee. The creator of any
transaction can choose to make the total value of the transaction outputs less than the total value of
its inputs. Whoever creates the block that first puts that transaction into the block chain gets to
collect the difference, which acts a transaction fee. So if you’re a node that’s creating a block that
contains, say, 200 transactions, then the sum of all those 200 transaction fees is paid to the address
that you put into that block. The transaction fee is purely voluntary, but we expect, based on our
understanding of the system, that as the block reward starts to run out, it will become more and more
important, almost mandatory, for users to include transaction fees in order to get a reasonable quality
of service. To a certain degree, this is already starting to happen now. But it is yet unclear precisely
how the system will evolve; it really depends on a lot of game theory which hasn’t been fully worked
out yet. That’s an interesting area of open research in Bitcoin.

There are still a few problems remaining with the consensus mechanism as we described it. The first
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major one is the leap of faith that we asked you to take that somehow we can pick a random node.
Second, we’ve created a new problem by giving nodes these incentives for participation. The system
can become unstable as the incentives cause a free-for-all where everybody wants to run a Bitcoin
node in the hope of capturing some of these rewards. And a third one is an even trickier version of
this problem, which is that an adversary might create a large number of Sybil nodes to try and subvert
the consensus process.

Mining and proof-of-work. It turns out that all of these problems are related, and all of them have the
same solution, which is called proof-of-work. The key idea behind proof-of-work is that we
approximate the selection of a random node by instead selecting nodes in proportion to a resource
that we hope that nobody can monopolize. If, for example, that resource is computing power, then
it’s a proof-of-work system. Alternately, it could be in proportion to ownership of the currency, and
that’s called proof-of-stake. Although it’s not used in Bitcoin, proof-of-stake is a legitimate alternate
model and it’s used in other cryptocurrencies. We'll see more about proof-of-stake and other
proof-of-work variants in Chapter 8.

But back to proof-of-work. Let’s try to get a better idea of what it means to select nodes in proportion
to their computing power. Another way of understanding this is that we’re allowing nodes to compete
with each other by using their computing power, and that will result in nodes automatically being
picked in that proportion. Yet another view of proof-of-work is that we’re making it moderately hard
to create new identities. It’s sort of a tax on identity creation and therefore on the Sybil attack. This
might all appear a bit vague, so let’s go ahead and look at the details of the proof-of-work system
that’s used in Bitcoin, which should make things a lot clearer.

Bitcoin achieves proof-of-work using hash puzzles. In order to create a block, the node that proposes
that block is required to find a number, or nonce, such that when you concatenate the nonce, the
previous hash, and the list of transactions that comprise that block and take the hash of this whole
string, then that hash output should be a number that falls into a target space that is quite small in
relation to the much larger output space of that hash function. We can define such a target space as
any value falling below a certain target value. In this case, the nonce will have to satisfy the following
inequality:

H(nonce || prev_hash || tx || tx || ... || tx) < target

As we saw earlier, normally a block contains a series of transactions that a node is proposing. In
addition, a block also contains a hash pointer to the previous block®. In addition, we’re now requiring
that a block also contain a nonce. The idea is that we want to make it moderately difficult to find a
nonce that satisfies this required property, which is that hashing the whole block together, including
that nonce, is going to result in a particular type of output. If the hash function satisfies the

! We are using the term hash pointer loosely. The pointer is just a string in this context as it need not tell us where to
find this block. We will find the block by asking other peers on the network for it. The important part is the hash that
both acts as an ID when requesting other peers for the block and lets us validate the block once we have obtained it.
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puzzle-friendliness property from Chapter 1, then the only way to succeed in solving this hash puzzle
is to just try enough nonces one by one until you get lucky. So specifically, if this target space were
just one percent of the overall output space, you would have to try about 100 nonces before you got
lucky. In reality, the size of this target space is not nearly as high as one percent of the output space.
It's much, much smaller than that as we will see shortly.

This notion of hash puzzles and proof of work completely does away with the requirement to
magically pick a random node. Instead, nodes are simply independently competing to solve these
hash puzzles all the time. Once in a while, one of them will get lucky and will find a random nonce that
satisfies this property. That lucky node then gets to propose the next block. That’s how the system is
completely decentralized. There is nobody deciding which node it is that gets to propose the next
block.

Difficult to compute. There are three important properties of hash puzzles. The first is that they need
to be quite difficult to compute. We said moderately difficult, but you’ll see why this actually varies
with time. As of the end of 2014, the difficulty level is about 10%° hashes per block. In other words the
size of the target space is only 1/10% of the size of the output space of the hash function. This is a lot
of computation — it’s out of the realm of possibility for a commodity laptop, for example. Because of
this, only some nodes even bother to compete in this block creation process. This process of
repeatedly trying and solving these hash puzzles is known as Bitcoin mining, and we call the
participating nodes miners. Even though technically anybody can be a miner, there’s been a lot of
concentration of power in the mining ecosystem due to the high cost of mining.

Parameterizable cost. The second property is that we want the cost to be parameterizable, not a
fixed cost for all time. The way that’s accomplished is that all the nodes in the Bitcoin peer-to-peer
network will automatically recalculate the target, that is the size of the target space as a fraction of
the output space, every 2016 blocks. They recalculate the target in such a way that the average time
between successive blocks produced in the Bitcoin network is about 10 minutes. With a 10-minute
average time between blocks, 2016 blocks works out to two weeks. In other words, the recalculation
of the target happens roughly every two weeks.

Let’s think about what this means. If you’re a miner, and you’ve invested a certain fixed amount of
hardware into Bitcoin mining, but the overall mining ecosystem is growing, more miners are coming
in, or they’re deploying faster and faster hardware, that means that over a two week period, slightly
more blocks are going to be found than expected. So nodes will automatically readjust the target, and
the amount of work that you have to do to be able to find a block is going to increase. So if you put in
a fixed amount of hardware investment, the rate at which you find blocks is actually dependent upon
what other miners are doing. There’s a very nice formula to capture this, which is that the probability
that any given miner, Alice, is going to win the next block is equivalent to the fraction of global hash
power that she controls. This means that if Alice has mining hardware that’s about 0.1 percent of total
hash power, she will find roughly one in every 1,000 blocks.

What is the purpose of this readjustment? Why do we want to maintain this 10-minute invariant? The



reason is quite simple. If blocks were to come very close together, then there would be a lot of
inefficiency, and we would lose the optimization benefits of being able to put a lot of transactions in a
single block. There is nothing magical about the number 10, and if you went down from 10 minutes to
5 minutes, it would probably be just fine. There’s been a lot of discussion about the ideal block latency
that altcoins, or alternative cryptocurrencies, should have. But despite some disagreements about the
ideal latency, everybody agrees that it should be a fixed amount. It cannot be allowed to go down
without limit. That’s why we have the automatic target recalculation feature.

The way that this cost function and proof of work is set up allows us to reformulate our security
assumption. Here’s where we finally depart from the last leap of faith that we asked you to take
earlier. Instead of saying that somehow the majority of nodes are honest in a context where nodes
don’t even have identities and not being clear about what that means, we can now state crisply, that
a lot of attacks on Bitcoin are infeasible if the majority of miners, weighted by hash power, are
following the protocol — or, are honest. This is true because if a majority of miners, weighted by hash
power, are honest, the competition for proposing the next block will automatically ensure that there
is at least a 50 percent chance that the next block to be proposed at any point is coming from an
honest node.

Sidebar. in the research fields of distributed systems and computer security, it is common to
assume that some percentage of nodes are honest and to show that the system works as intended
even if the other nodes behave arbitrarily. That’s basically the approach we’ve taken here, except
that we weight nodes by hash power in computing the majority. The original Bitcoin whitepaper
contains this type of analysis as well.

But the field of game theory provides an entirely different, and arguably more sophisticated and
realistic way to determine how a system will behave. In this view, we don’t split nodes into honest
and malicious. Instead, we assume that every node acts according to its incentives. Each node picks
a (randomized) strategy to maximize its payoff, taking into account other nodes’ potential
strategies. If the protocol and incentives are designed well, then most nodes will follow the rules
most of the time. “Honest” behavior is just one strategy of many, and we attach no particular moral
salience to it.

In the game theoretic view, the big question is whether the default miner behavior is a “Nash
equilibrium,” that is, whether it represents a stable situation in which no miner can realize a higher
payoff by deviating from honest behavior. This question is still contentious and an active area of
research.

Solving hash puzzles is probabilistic because nobody can predict which nonce is going to result in
solving the hash puzzle. The only way to do it is to try nonces one by one and hope that one succeeds.
Mathematically, this process is called Bernoulli trials. A Bernoulli trial is an experiment with two



possible outcomes, and the probability of each outcome occurring is fixed between successive trials.
Here, the two outcomes are whether or not the hash falls in the target, and assuming the hash
functions behaves like a random function, the probability of those outcomes is fixed. Typically, nodes
try so many nonces that Bernoulli trials, a discrete probability process, can be well approximated by a
continuous probability process called a Poisson process, a process in which events occur
independently at a constant average rate. The end result of all of that is that the probability density
function that shows the relative likelihood of the time until the next block is found looks like Figure

2.5.

10
minutes

Probability density

Time to next block (entire network)

Figure 2.5 Probability density function of the time until the next block is found.

This is known as an exponential distribution. There is some small probability that if a block has been
found now, the next block is going to be found very soon, say within a few seconds or a minute. And
there is also some small probability that it will take a long time, say an hour, to find the next block.
But overall, the network automatically adjusts the difficulty so that the inter-block time is maintained
at an average, long term, of 10 minutes. Notice that Figure 2.5 shows how frequently blocks are going
to be created by the entire network not caring about which miner actually finds the block.

If you’re a miner, you’re probably interested in how long it will take you to find a block. What does
this probability density function look like? It’s going to have the same shape, but it’s just going to have
a different scale on the x-axis. Again, it can be represented by a nice equation.

For a specific miner:

10 minutes
fraction of hash power

mean time to next block =

If you have 0.1 percent of the total network hash power, this equation tells us that you’re going to
find blocks once every 10,000 minutes, which is just about a week. Not only is your mean time
between blocks going to be very high, but the variance of the time between blocks found by you is
also going to be very high. This has some important consequences that we’re going to look at in

chapter 5.
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Trivial to verify. Let’s now turn to the third important property of this proof of work function, which is
that it is trivial to verify that a node has computed proof of work correctly. Even if it takes a node, on
average, 10%° tries to find a nonce that makes the block hash fall below the target, that nonce must be
published as part of the block. It is thus trivial for any other node to look at the block contents, hash
them all together, and verify that the output is less than the target. This is quite an important
property because, once again, it allows us to get rid of centralization. We don’t need any centralized
authority verifying that miners are doing their job correctly. Any node or any miner can instantly
verify that a block found by another miner satisfies this proof-of-work property.

2.5 Putting it all together

Cost of mining. Let’s now look at mining economics. We mentioned it’s quite expensive to operate as
a miner. At the current difficulty level, finding a single block takes computing about 10* hashes and
the block reward is about 25 Bitcoins, which is a sizable amount of money at the current exchange
rate. These numbers allow for an easy calculation of whether it’s profitable for one to mine, and we
can capture this decision with a simple statement:

If
mining reward > mining cost
then miner profits
where
mining reward = block reward + tx fees
mining cost = hardware cost + operating costs (electricity, cooling, etc.)

Fundamentally, the mining reward that the miner gets is in terms of the block reward and transaction
fees. The miner asks himself how it compares to the total expenditure, which is the hardware and
electricity cost.

But there are some complications to this simple equation. The first is that, as you may have noticed,
the hardware cost is a fixed cost whereas the electricity cost is a variable cost that is incurred over
time. Another complication is that the reward that miners get depends upon the rate at which they
find blocks, which depends on not just the power of their hardware, but on the ratio of their hash rate
to the total global hash rate. A third complication is that the costs that the miner incurs are typically
denominated in dollars or some other traditional currency, but their reward is denominated in
bitcoin. So this equation has a hidden dependence on Bitcoin’s exchange rate at any given time. And
finally, so far we’ve assumed that the miner is interested in honestly following the protocol. But the
miner might choose to use some other mining strategy instead of always attempting to extend the
longest valid branch. So this equation doesn’t capture all the nuances of the different strategies that
the miner can employ. Actually analyzing whether it makes sense to mine is a complicated game
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theory problem that’s not easily answered.

At this point, we’ve obtained a pretty good understanding of how a Bitcoin achieves decentralization.
We will now recap the high level points and put it all together in order to get an even better
understanding.

Let’s start from identities. As we’ve learned, there are no real-world identities required to participate
in the Bitcoin protocol. Any user can create a pseudonymous key pair at any moment, any number of
them. When Alice wants to pay Bob in bitcoins, the Bitcoin protocol does not specify how Alice learns
Bob’s address. Given these pseudonymous key pairs as identities, transactions are basically messages
that are broadcast to the Bitcoin peer-to-peer network that are instructions to transfer coins from one
address to another. Bitcoins are just transaction outputs, and we will discuss this in much more detail
in the next chapter.

Sidebar. Bitcoin doesn’t have fixed denominations like US dollars, and in particular, there is no
special designation of “1 bitcoin.” Bitcoins are just transaction outputs, and in the current rules,
they can have an arbitrary value with 8 decimal places of precision. The smallest possible value is
0.00000001 BTC (bitcoins), which is called 1 Satoshi.

The goal of the Bitcoin peer-to-peer network is to propagate all new transactions and new blocks to
all the Bitcoin peer nodes. But the network is highly imperfect, and does a best-effort attempt to relay
this information. The security of the system doesn’t come from the perfection of the peer-to-peer
network. Instead, the security comes from the block chain and the consensus protocol that we
devoted much of this chapter to studying.

When we say that a transaction is included in the block chain, what we really mean is that the
transaction has achieved numerous confirmations. There’s no fixed number to how many
confirmations are necessary before we are sufficiently convinced of its inclusion, but six is a
commonly-used heuristic. The more confirmations a transaction has received, the more certain you
can be that this transaction is part of the consensus chain. There will often be orphan blocks, or blocks
that don’t make it into the consensus chain. There are a variety of reasons that could lead to a block
being orphaned. The block may contain an invalid transaction, or a double-spend attempt. It could
also just be a result of network latency. That is, two miners may simply end up finding new blocks
within just a few seconds of each other. So both of these blocks were broadcast nearly simultaneously
onto the network, and one of them will inevitably be orphaned.

Finally, we looked at hash puzzles and mining. Miners are special types of nodes that decide to
compete in this game of creating new blocks. They’re rewarded for their effort in terms of both newly
minted bitcoins (the new-block reward) and existing bitcoins (transaction fees), provided that other
miners build upon their blocks. A subtle but crucial point: say that Alice and Bob are two different
miners, and Alice has 100 times as much computing power as Bob. This does not mean that Alice will
always win the race against Bob to find the next block. Instead, Alice and Bob have a probability ratio
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of finding the next block, in the proportion 100 to 1. In the long term, Bob will find, on average, one
percent of the number of blocks that Alice finds.

We expect that miners will typically be somewhere close to the economic equilibrium in the sense
that the expenditure that they incur in terms of hardware and electricity will be roughly equal to the
rewards that they obtain. The reason is that if a miner is consistently making a loss, she will probably
stop mining. On the other hand, and if mining is very profitable given typical hardware and electricity
costs, then more mining hardware would enter the network. The increased hash rate would lead to an
increase in the difficulty, and each miner’s expected reward would drop.

This notion of distributed consensus permeates Bitcoin quite deeply. In a traditional currency,
consensus does come into play to a certain limited extent. Specifically, there is a consensus process
that determines the exchange rate of the currency. That is certainly true in Bitcoin as well; We need
consensus around the value of Bitcoin. But in Bitcoin, additionally, we need consensus on the state of
the ledger, which is what the block chain accomplishes. In other words, even the accounting of how
many bitcoins you own is subject to consensus. When we say that Alice owns a certain amount or
number of bitcoins, what we actually mean is that the Bitcoin peer-to-peer network, as recorded in
the block chain, considers the sum total of all Alice’s addresses to own that number of bitcoins. That is
ultimate nature of truth in Bitcoin: ownership of bitcoins is nothing more than other nodes agreeing
that a given party owns those bitcoins.

Finally, we need consensus about the rules of the system because occasionally, the rules of the
system have to change. There are two types of changes to the rules of Bitcoin, known respectively as
soft forks and hard forks. We're going to defer this discussion of the differences to later chapters in
which we will discuss them in detail.

Getting a cryptocurrency off the ground. Another subtle concept is that of bootstrapping. There is a

tricky interplay between three different ideas in Bitcoin: the security of the block chain, the health of
the mining ecosystem, and the value of the currency. We obviously want the block chain to be secure
for Bitcoin to be a viable currency. For the block chain to be secure, an adversary must not be able to
overwhelm the consensus process. This in turn means that an adversary cannot create a lot of mining
nodes and take over 50 percent or more of the new block creation.

But when will that be true? A prerequisite is having a healthy mining ecosystem made up of largely
honest, protocol-following nodes. But what’s a prerequisite for that — when can we be sure that a lot
of miners will put a lot of computing power into participating in this hash puzzle solving competition?
Well, they’re only going to do that if the exchange rate of Bitcoin is pretty high because the rewards
that they receive are denominated in Bitcoins whereas their expenditure is in dollars. So the more the
value of the currency goes up, the more incentivized these miners are going to be.

But what ensures a high and stable value of the currency? That can only happen if users in general
have trust in the security of the block chain. If they believe that the network could be overwhelmed at
any moment by an attacker, then Bitcoin is not going to have a lot of value as a currency. So you have
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this interlocking interdependence between the security of the block chain, a healthy mining
ecosystem and the exchange rate.

Because of the cyclical nature of this three-way dependence, the existence of each of these is
predicated on the existence of the others. When Bitcoin was first created, none of these three
existed. There were no miners other than Nakamoto himself running the mining software. Bitcoin
didn’t have a lot of value as a currency. And the block chain was, in fact, insecure because there was
not a lot of mining going on and anybody could have easily overwhelmed this process.

There’s no simple explanation for how Bitcoin went from not having any of these properties to having
all three of them. Media attention was part of the story — the more people hear about Bitcoin, the
more they’re going to get interested in mining. And the more they get interested in mining, the more
confidence people will have in the security of the block chain because there’s now more mining
activity going on, and so forth. Incidentally, every new Altcoin that wants to succeed also has to
somehow solve this problem of pulling itself up by its bootstraps.

51-percent attack. Finally, let’s consider what would happen if consensus failed and there was in fact
a 51-percent attacker who controls 51 percent or more of the mining power in the Bitcoin network.
WEe’'ll consider a variety of possible attacks and see which ones can actually be carried out by such an
attacker.

First of all, can this attacker steal coins from an existing address? As you may have guessed, the
answer is no, because stealing from an existing address is not possible unless you subvert the
cryptography. It’s not enough to subvert the consensus process. This is not completely obvious. Let’s
say the 51 percent attacker creates an invalid block that contains an invalid transaction that
represents stealing Bitcoins from an existing address that the attacker doesn’t control and transferring
them to his own address. The attacker can pretend that it’s a valid transaction and keep building upon
this block. The attacker can even succeed in making that the longest branch. But the other honest
nodes are simply not going to accept this block with an invalid transaction and are going to keep
mining based on the last valid block that they found in the network. So what will happen is that there
will be what we call a fork in the chain.

Now imagine this from the point of view of the attacker trying to spend these invalid coins, and send
them to some merchant Bob as payment for some goods or service. Bob is presumably running a
Bitcoin node himself, and it will be an honest node. Bob’s node will reject that branch as invalid
because it contains an invalid transaction. It’s invalid because the signatures didn’t check out. So
Bob’s node will simply ignore the longest branch because it’s an invalid branch. And because of that,
subverting consensus is not enough. You have to subvert cryptography to steal bitcoins. So we
conclude that this attack is not possible for a 51 percent attacker.

We should note that all this is only a thought experiment. If there were, in fact, actual signs of a 51
percent attack, what will probably happen is that the developers will notice this and react to it. They
will update the Bitcoin software, and we might expect that the rules of the system, including the
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peer-to-peer network, might change in some form to make it more difficult for this attack to succeed.

But we can’t quite predict that. So we're working in a simplified model where a 51 percent attack
happens, but other than that, there are no changes or tweaks to the rules of the system.

Let’s consider another attack. Can the 51-percent attacker suppress some transactions? Let’s say
there is some user, Carol, whom the attacker really doesn’t like. The attacker knows some of Carol’s
addresses, and wants to make sure that no coins belonging to any of those addresses can possibly be
spent. Is that possible? Since he controls the consensus process of the block chain, the attacker can
simply refuse to create any new blocks that contain transactions from one of Carol’s addresses. The
attacker can further refuse to build upon blocks that contain such transactions. However, he can’t
prevent these transactions from being broadcast to the peer-to-peer network because the network
doesn’t depend on the block chain, or on consensus, and we’re assuming that the attacker doesn’t
fully control the network. The attacker cannot stop the transactions from reaching the majority of
nodes, so even if the attack succeeds, it will at least be apparent that the attack is happening.

Can the attacker change the block reward? That is, can the attacker start pretending that the block
reward is, instead of 25 Bitcoins, say 100 Bitcoins? This is a change to the rules of the system, and
because the attacker doesn’t control the copies of the Bitcoin software that all of the honest nodes
are running, this is also not possible. This is similar to the reason why the attacker cannot include
invalid transactions. Other nodes will simply not recognize the increase in the block reward, and the
attacker will thus be unable to spend them.

Finally, can the attacker somehow destroy confidence in Bitcoin? Well, let’s imagine what would
happen. If there were a variety of double-spend attempts, situations in which nodes did not extend
the longest valid branch, and other attempted attacks, then people are going to likely decide that
Bitcoin is no longer acting as a decentralized ledger that they can trust. People will lose confidence in
the currency, and we might expect that the exchange rate of Bitcoin will plummet. In fact, if it is
known that there is a party that controls 51 percent of the hash power, then it’s possible that people
will lose confidence in Bitcoin even if the attacker is not necessarily trying to launch any attacks. So it
is not only possible, but in fact likely, that a 51 percent attacker of any sort will destroy confidence in
the currency. Indeed, this is the main practical threat if a 51 percent attack were ever to materialize.
Considering the amount of expenditure that the adversary would have to put into attacking Bitcoin
and achieving a 51 percent majority, none of the other attacks that we described really make sense
from a financial point of view.

Hopefully, at this point you’ve obtained a really good understanding of how decentralization is
achieved in Bitcoin. You should have a good command on how identities work in Bitcoin, how
transactions are propagated and validated, the role of the peer-to-peer network in Bitcoin, how the
block chain is used to achieve consensus, and how hash puzzles and mining work. These concepts
provide a solid foundation and a good launching point for understanding a lot of the more subtle
details and nuances of Bitcoin, which we’re going to see in the coming chapters.
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The Bitcoin whitepaper:

Nakamoto, Satoshi. Bitcoin: A peer-to-peer electronic cash system. (2008)

The original application of proof-of-work:

Back, Adam. Hashcash-a denial of service counter-measure. (2002)

The Paxos algorithm for consensus:

Lamport, Leslie. Paxos made simple. ACM Sigact News 32.4 (2001): 18-25.

Exercises

1. Why do miners run “full nodes” that keep track of the entire block chain’ whereas Bob the
merchant can get away with a “lite node” that implements “simplified payment verification,” needing
to examine only the last few blocks?

2. If a malicious ISP completely controls a user’s connections, can it launch a double-spend attack
against the user? How much computational effort would this take?

3. Consider Bob the merchant deciding whether or not to accept the C,— B transaction. What Bob is
really interested in is whether or not the other chain will catch up. Why, then, does he simply check
how many confirmations C,— B has received, instead of computing the difference in length between
the two chains?

Cy>B

Gy A

2 This only applies to “solo” miners who’re not part of a mining pool, but we haven’t discussed that yet.
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4. Even when all nodes are honest, blocks will occasionally get orphaned: if two miners Minnie and
Mynie discover blocks nearly simultaneously, neither will have time to hear about the other’s block
before broadcasting hers.

4a. What determines whose block will end up on the consensus branch?

4b. What factors affect the rate of orphan blocks? Can you derive a formula for the rate based on
these parameters?

4c. Try to empirically measure this rate on the Bitcoin network.

4d. If Mynie hears about Minnie’s block just before she’s about to discover hers, does that mean she
wasted her effort?

4e. Do all miners have their blocks orphaned at the same rate, or are some miners affected
disproportionately?

5a. How can a miner establish an identity in a way that’s hard to fake? (i.e., anyone can tell which
blocks were mined by her.)

5b. If a miner misbehaves, can other miners “boycott” her by refusing to build on her blocks on an
ongoing basis?

6a. Assuming that the total hash power of the network stays constant, what is the probability that a
block will be found in the next 10 minutes?

6b. Suppose Bob the merchant wants to have a policy that orders will ship within x minutes after
receipt of payment. What value of x should Bob choose so that with 99% confidence 6 blocks will be
found within x minutes?
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Chapter 3: Mechanics of Bitcoin

This chapter is about the mechanics of Bitcoin. Whereas in the first two chapters, we’ve talked at a
relatively high level, now we’re going to delve into detail. We'll look at real data structures, real
scripts, and try to learn the details and language of Bitcoin in a precise way to set up everything that
we want to talk about in the rest of this book. This chapter will be challenging because a lot of details
will be flying at you. You’ll learn the specifics and the quirks that make Bitcoin what it is.

To recap where we left off last time, the Bitcoin consensus mechanism gives us an append-only
ledger, a data structure that we can only write to. Once data is written to it, it’s there forever. There’s
a decentralized protocol for establishing consensus about the value of that ledger, and there are
miners who perform that protocol and validate transactions. Together they make sure that
transactions are well formed, that they aren’t already spent, and that the ledger and network can
function as a currency. At the same time, we assumed that a currency existed to motivate these
miners. In this chapter we’ll look at the details of how we actually build that currency, to motivate the
miners that make this whole process happen.

3.1 Bitcoin transactions

Let’s start with transactions, Bitcoin’s fundamental building block. We're going to use a simplified
model of a ledger for the moment. Instead of blocks, let’s suppose individual transactions are added
to the ledger one at a time.

Create 25 coins and credit to Alice RCSERTED By IR

Transfer 17 coins from Alice to BobSIGNED( Alice)

Transfer 8 coins from Bob to CarolSIGNED(Bob)

Transfer 5 coins from Carol to Aliceg; ep oo

Transfer 15 coins from Alice to Da‘"dsmao( Alice)

Figure 3.1 an account-based ledger

How can we build a currency on top of such a ledger? The first model you might think of, which is
actually the mental model many people have for how Bitcoin works, is that you have an
account-based system. You can add some transactions that create new coins and credit them to
somebody. And then later you can transfer them. A transaction would say something like “we’re
moving 17 coins from Alice to Bob”, and it will be signed by Alice. That’s all the information about the
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transaction that’s contained in the ledger. In Figure 3.1, after Alice receives 25 coins in the first
transaction and then transfers 17 coins to Bob in the second, she’d have 8 Bitcoins left in her account.

The downside to this way of doing things is that anyone who wants to determine if a transaction is
valid will have to keep track of these account balances. Take another look at Figure 3.1. Does Alice
have the 15 coins that she’s trying to transfer to David? To figure this out, you’d have to look
backwards in time forever to see every transaction affecting Alice, and whether or not her net balance
at the time that she tries to transfer 15 coins to David is greater than 15 coins. Of course we can make
this a little bit more efficient with some data structures that track Alice’s balance after each
transaction. But that’s going to require a lot of extra housekeeping besides the ledger itself.

Because of these downsides, Bitcoin doesn’t use an account-based model. Instead, Bitcoin uses a
ledger that just keeps track of transactions similar to ScroogeCoin in Chapter 1.

ﬂ Inputs: @

Outputs: 25.0—Alice

il Inputs: 1[0]
Outputs: 17.0-Bob, 8.0—Alice
SIGNED{Alice)
ﬂ Inputs: 2[0]
Outputs: 8.0—»Carol, 9.0—»Bob
SIGNED(Bob)
ﬂ Inputs: 2[1]
Outputs: 6.0—David, 2.0—Alice
SIGNED({Alice)

Figure 3.2 a transaction-based ledger, which is very close to Bitcoin

Transactions specify a number of inputs and a number of outputs (recall PayCoins in ScroogeCoin).
You can think of the inputs as coins being consumed (created in a previous transaction) and the
outputs as coins being created. For transactions in which new currency is being minted, there are no
coins being consumed (recall CreateCoins in ScroogeCoin). Each transaction has a unique identifier.
Outputs are indexed beginning with 0, so we will refer to the first output as “output 0”.

Let’s now work our way through Figure 3.2. Transaction 1 has no inputs because this transaction is
creating new coins, and it has an output of 25 coins going to Alice. Also, since this is a transaction
where new coins are being created, no signature is required. Now let’s say that Alice wants to send
some of those coins over to Bob. To do so, she creates a new transaction, transaction 2 in our
example. In the transaction, she has to explicitly refer to the previous transaction where these coins
are coming from. Here, she refers to output 0 of transaction 1 (indeed the only output of transaction
1), which assigned 25 bitcoins to Alice. She also must specify the output addresses in the transaction.

76



In this example, Alice specifies two outputs, 17 coins to Bob, and 8 coins to Alice. And, of course, this
whole thing is signed by Alice, so that we know that Alice actually authorizes this transaction.

Change addresses. Why does Alice have to send money to herself in this example? Just as coins in
ScroogeCoin are immutable, in Bitcoin, the entirety of a transaction output must be consumed by
another transaction, or none of it. Alice only wants to pay 17 bitcoins to Bob, but the output that she
owns is worth 25 bitcoins. So she needs to create a new output where 8 bitcoins are sent back to
herself. It could be a different address from the one that owned the 25 bitcoins, but it would have to
be owned by her. This is called a change address.

Efficient verification. When a new transaction is added to the ledger, how easy is it to check if it is
valid? In this example, we need to look up the transaction output that Alice referenced, make sure
that it has a value of 25 bitcoins, and that it hasn’t already been spent. Looking up the transaction
output is easy since we’re using hash pointers. To ensure it hasn’t been spent, we need to scan the
block chain between the referenced transaction and the latest block. We don’t need to go all the way
back to the beginning of the block chain, and it doesn’t require keeping any additional data structures
(although, as we’ll see, additional data structures will speed things up).

Consolidating funds. As in ScroogeCoin, since transactions can have many inputs and many outputs,
splitting and merging value is easy. For example, say Bob received money in two different transactions
— 17 bitcoins in one, and 2 in another. Bob might say, I'd like to have one transaction | can spend
later where | have all 19 bitcoins. That’s easy — he creates a transaction with the two inputs and one
output, with the output address being one that he owns. That lets him consolidate those two
transactions.

Joint payments. Similarly, joint payments are also easy to do. Say Carol and Bob both want to pay
David. They can create a transaction with two inputs and one output, but with the two inputs owned
by two different people. And the only difference from the previous example is that since the two
outputs from prior transactions that are being claimed here are from different addresses, the
transaction will need two separate signatures — one by Carol and one by Bob.

Transaction syntax. Conceptually that’s really all there is to a Bitcoin transaction. Now let’s see how
it’s represented at a low level in Bitcoin. Ultimately, every data structure that’s sent on the network is
a string of bits. What’s shown in Figure 3.3 is very low-level, but this further gets compiled down to a
compact binary format that’s not human-readable.
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metadata

input(s)

output(s)

—

—_

—_—

\ [

~F

"hash":"5a42590fbe0a%0ee8e8747244dbc84f0db1a3a24e8f 1b95b10c9e050990b8bbb",
"ver”:1,

"vin_sz":2,

"vout_sz":1,

"lock_time™:0,

"size™ 404,

"in":[

]

{
"prev_out":{
"hash":"3be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260",
“n":0

b

"scriptSig":"30440..."
b
{
"prev_out":{
“hash":"7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91ffob34e”,
"0

b
"scriptSig™:"3f3adce8d....”

3

ut™:[
{

"value":"10.12287097",

"scriptPubKey":"OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e OP_EQUALVERIFY OP_CHECKSIG™
}
]

Figure 3.3 An actual Bitcoin transaction.

As you can see in Figure 3.3, there are three parts to a transaction: some metadata, a series of inputs,
and a series of outputs.
® Metadata. There’s some housekeeping information — the size of the transaction, the number
of inputs, and the number of outputs. There’s the hash of the entire transaction which serves
as a unique ID for the transaction. That’s what allows us to use hash pointers to reference
transactions. Finally there’s a “lock_time” field, which we’ll come back to later.

e Inputs. The transaction inputs form an array, and each input has the same form. An input
specifies a previous transaction, so it contains a hash of that transaction, which acts as a hash
pointer to it. The input also contains the index of the previous transaction’s outputs that’s
being claimed. And then there’s a signature. Remember that we have to sign to show that we
actually have the ability to claim those previous transaction outputs.

e Outputs. The outputs are again an array. Each output has just two fields. They each have a
value, and the sum of all the output values has to be less than or equal to the sum of all the
input values. If the sum of the output values is less than the sum of the input values, the
difference is a transaction fee to the miner who publishes this transaction.

And then there’s a funny line that looks like what we want to be the recipient address. Each
output is supposed to go to a specific public key, and indeed there is something in that field
that looks like it’s the hash of a public key. But there’s also some other stuff that looks like a
set of commands. Indeed, this field is a script, and we’ll discuss this presently.
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3.2 Bitcoin Scripts

Each transaction output doesn’t just specify a public key. It actually specifies a script. What is a script,
and why do we use scripts? In this section we’ll study the Bitcoin scripting language and understand
why a script is used instead of simply assigning a public key.

The most common type of transaction in Bitcoin is to redeem a previous transaction output by signing
with the correct key. In this case, we want the transaction output to say, “this can be redeemed by a
signature from the owner of address X.” Recall that an address is a hash of a public key. So merely
specifying the address X doesn’t tell us what the public key is, and doesn’t give us a way to check the
signature! So instead the transaction output must say: “this can be redeemed by a public key that
hashes to X, along with a signature from the owner of that public key.” As we'll see, this is exactly
what the most common type of script in Bitcoin says.

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY
OP_CHECKSIG
Figure 3.4. an example Pay-to-PubkeyHash script, the most common type of output script in Bitcoin

But what happens to this script? Who runs it, and how exactly does this sequence of instructions
enforce the above statement? The secret is that the inputs also contain scripts instead of signatures.
To validate that a transaction redeems a previous transaction output correctly, we combine the new
transaction’s input script and the earlier transaction’s output script. We simply concatenate them,

and the resulting script must run successfully in order for the transaction to be valid. These two scripts
are called scriptPubKey and scriptSig because in the simplest case, the output script just specifies a
public key (or an address to which the public key hashes), and the input script specifies a signature
with that public key. The combined script can be seen in Figure 3.5.

Bitcoin scripting language. The scripting language was built specifically for Bitcoin, and is just called
‘Script’ or the Bitcoin scripting language. It has many similarities to a language called Forth, which is
an old, simple, stack-based, programming language. But you don’t need to understand Forth to
understand Bitcoin scripting. The key design goals for Script were to have something simple and
compact, yet with native support for cryptographic operations. So, for example, there are
special-purpose instructions to compute hash functions and to compute and verify signatures.

The scripting language is stack-based. This means that every instruction is executed exactly once, in a
linear manner. In particular, there are no loops in the Bitcoin scripting language. So the number of
instructions in the script gives us an upper bound on how long it might take to run and how much
memory it could use. The language is not Turing-complete, which means that it doesn’t have the
ability to compute arbitrarily powerful functions. And this is by design — miners have to run these

79



scripts, which are submitted by arbitrary participants in the network. We don’t want to give them the
power to submit a script that might have an infinite loop.

<sig>

<pubKey>

OP_DUP

OP_HASH160

<pubKeyHash?>

OP_EQUALVERIFY

OP_CHECKSIG
Figure 3.5. To check if a transaction correctly redeems an output, we create a combined script by
appending the scriptPubKey of the referenced output transaction (bottom) to the scriptSig of the
redeeming transaction (top). Notice that <pubKeyHash?> contains a ‘?’. We use this notation to
indicate that we will later check to confirm that this is equal to the hash of the public key provided in
the redeeming script.

There are only two possible outcomes when a Bitcoin script is executed. It either executes successfully
with no errors, in which case the transaction is valid. Or, if there’s any error while the script is
executing, the whole transaction will be invalid and shouldn’t be accepted into the block chain.

The Bitcoin scripting language is very small. There’s only room for 256 instructions, because each one
is represented by one byte. Of those 256, 15 are currently disabled, and 75 are reserved. The reserved
instruction codes haven’t been assigned any specific meaning yet, but might be instructions that are
added later in time.

Many of the basic instructions are those you’d expect to be in any programming language. There’s
basic arithmetic, basic logic — like ‘if’ and ‘then’ — , throwing errors, not throwing errors, and
returning early. Finally, there are crypto instructions which include hash functions, instructions for
signature verification, as well as a special and important instruction called CHECKMULTISIG that lets
you check multiple signatures with one instruction. Figure 3.6 lists some of the most common
instructions in the Bitcoin scripting language.

The CHECKMULTISIG instruction requires specifying n public keys, and a parameter t, for a threshold.
For this instruction to execute validly, there have to be at least t signatures from t out of n of those
public keys that are valid. We’ll show some examples of what you’d use multisignatures for in the next
section, but it should be immediately clear this is quite a powerful primitive. We can express in a
compact way the concept that t out of n specified entities must sign in order for the transaction to be
valid.

Incidentally, there’s a bug in the multisignature implementation, and it’s been there all along. The
CHECKMULTISIG instruction pops an extra data value off the stack and ignores it. This is just a quirk of
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the Bitcoin language and one has to deal with it by putting an extra dummy variable onto the stack.
The bug was in the original implementation, and the costs of fixing it are much higher than the
damage it causes, as we’ll see later in Section 3.5. At this point, this bug is considered a feature in
Bitcoin, in that it’s not going away.

OP_DUP Duplicates the top item on the stack
OP_HASH160 Hashes twice: first using SHA-256 and then RIPEMD-160
OP_EQUALVERIFY Returns true if the inputs are equal. Returns false and marks the

transaction as invalid if they are unequal

OP_CHECKSIG Checks that the input signature is a valid signature using the input public
key for the hash of the current transaction

OP_CHECKMULTISIG Checks that the k signatures on the transaction are valid signatures from
k of the specified public keys.

Figure 3.6 a list of common Script instructions and their functionality.

Executing a script. To execute a script in a stack-based programming language, all we’ll need is a stack
that we can push data to and pop data from. We won’t need any other memory or variables. That's
what makes it so computationally simple. There are two types of instructions: data instructions and
opcodes. When a data instruction appears in a script, that data is simply pushed onto the top of the
stack. Opcodes, on the other hand, perform some function, often taking as input data that is on top of
the stack.

Now let’s look at how the Bitcoin script in Figure 3.5 is executed. Refer to Figure 3.7, where we show
the state of the stack after each instruction. The first two instructions in this script are data
instructions — the signature and the public key used to verify that signature — specified in the
scriptSig component of a transaction input in the redeeming transaction. As we mentioned, when we
see a data instruction, we just push it onto the stack. The rest of the script was specified in the
scriptPubKey component of a transaction output in the referenced transaction.

First we have the duplicate instruction, OP_DUP, so we just push a copy of the public key onto the top
of the stack. The next instruction is OP_HASH160, which tells us to pop the top value, compute its
cryptographic hash, and push the result onto the top of the stack. When this instruction finishes
executing, we will have replaced the public key on the top of the stack with its hash.
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<sig>  <pubKey> OP DUP OP HASH160 <pubKeyHash?> OP EQUALVERIFY OP CHECKSIG

Figure 3.7 Execution of a Bitcoin script. On the bottom, we show the instruction in the script. Data
instructions are denoted with surrounding angle brackets, whereas opcodes begin with “OP_". On the
top, we show the stack just after that instruction has been executed.

Next, we’re going to do one more push of data onto the stack. Recall that this data was specified by
the sender of the referenced transaction. It is the hash of a public key that the sender specified; the
corresponding private key must be used to generate the signature to redeem these coins. At this
point, there are two values at the top of the stack. There is the hash of the public key, as specified by
the sender, and the hash of the public key that was used by the recipient when trying to claim the
coins.

At this point we’ll run the EQUALVERIFY command, which checks that the two values at the top of the
stack are equal. If they aren’t, an error will be thrown, and the script will stop executing. But in our
example, we'll assume that they’re equal, that is, that the recipient of the coins used the correct
public key. That instruction will consume those two data items that are at the top of the stack, And
the stack now contains two items — a signature and the public key.

We've already checked that this public key is in fact the public key that the referenced transaction
specified, and now we have to check if the signature is valid. This is a great example of where the
Bitcoin scripting language is built with cryptography in mind. Even though it’s a fairly simple language
in terms of logic, there are some quite powerful instructions in there, like this “OP_CHECKSIG”
instruction. This single instruction pops those two values off of the stack, and does the entire
signature verification in one go.

But what is this a signature of? What is the input to the signature function? It turns out there’s only
one thing you can sign in Bitcoin — an entire transaction. So the “CHECKSIG” instruction pops the two
values, the public key and signature, off the stack, and verifies that is a valid signature for the entire
transaction using that public key. Now we’ve executed every instruction in the script, and there’s
nothing left on the stack. Provided there weren’t any errors, the output of this script will simply be
true indicating that the transaction is valid.

What’s used in practice. In theory, Script lets us specify, in some sense, arbitrary conditions that must

be met in order to spend coins. But, as of today, this flexibility isn’t used very heavily. If we look at the
scripts that have actually been used in the history of Bitcoin so far, the vast majority, 99.9 percent, are
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exactly the same script, which is in fact the script that we used in our example. As we saw, this script
just specifies one public key and requires a signature for that public key in order to spend the coins.
There are a few other instructions that do get some use. MULTISIG gets used a little bit as does a
special type of script called Pay-to-Script-Hash which we’ll discuss shortly. But other than that, there
hasn’t been much diversity in terms of what scripts get used. This is because Bitcoin nodes, by default,
have a whitelist of standard scripts, and they refuse to accept scripts that are not on the list. This
doesn’t mean that those scripts can’t be used at all; it just makes them harder to use. In fact this
distinction is a very subtle point which we’ll return to in a bit when we talk about the Bitcoin
peer-to-peer network.

Proof of burn. A proof-of-burn is a script that can never be redeemed. Sending coins to a
proof-of-burn script establishes that they have been destroyed since there’s no possible way for them
to be spent. One use of proof-of-burn is to bootstrap an alternative to Bitcoin by forcing people to
destroy Bitcoin in order to gain coins in the new system. We'll discuss this in more detail in Chapter
10. Proof-of-burn is quite simple to implement: the OP_RETURN opcode throws an error if it’s ever
reached. No matter what values you put before OP_RETURN, that instruction will get executed
eventually, in which case this script will return false.

Because the error is thrown, the data in the script that comes after OP_RETURN will not be processed.
So this is an opportunity for people to put arbitrary data in a script, and hence into the block chain. If,
for some reason, you want to write your name, or if you want to timestamp and prove that you knew
some data at a specific time, you can create a very low value Bitcoin transaction. You can destroy a
very small amount of currency, but you get to write whatever you want into the block chain, which
should be kept around forever.

Pay-to-script-hash. One consequence of the way that Bitcoin scripts works is that the sender of coins
has to specify the script exactly. But this can sometimes be quite a strange way of doing things. Say,
for example, you’re a consumer shopping online, and you’re about to order something. And you say,
“Alright, I'm ready to pay. Tell me the address to which | should send my coins.” Now, say that the
company that you’re ordering from is using MULTISIG addresses. Then, since the one spending the
coins has to specify this, the retailer will have to come back and say, “Oh, well, we’re doing something
fancy now. We’re using MULTISIG. We're going to ask you to send the coins to some complicated
script.” You might say, “l don’t know how to do that. That’s too complicated. As a consumer, | just
want to send to a simple address.”

Bitcoin has a clever solution to this problem, and it applies to not just multi-sig addresses but to any
complicated condition governing when coins can be spent. Instead of telling the sender “send your
coins to the hash of this public key”, the receiver can instead tell the sender “send your coins to the
hash of this script. Impose the condition that to redeem those coins, it is necessary to reveal the script
that has the given hash, and further, provide data that will make the script evaluate to true.” The
sender achieves this by using the Pay-to-script-hash (P2SH) transaction type, which has the above
semantics.
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Specifically, the P2SH script simply hashes the top value on the stack, checks if it matches the
provided hash value, then executes a special second step of validation: that top data value from the
stack is reinterpreted as a sequence of instructions, and executed a second time as a script, with the
rest of the stack as input.

Getting support for P2SH was quite complicated since it wasn’t part of Bitcoin’s initial design
specification. It was added after the fact. This is probably the most notable feature that’s been added
to Bitcoin that wasn’t there in the original specification. And it solves a couple of important problems.
It removes complexity from the sender, so the recipient can just specify a hash that the sender sends
money to. In our example above, Alice need not worry that Bob is using multisig; she just sends to
Bob’s P2SH address, and it is Bob’s responsibility to specify the fancy script when he wants to redeem
the coins.

P2SH also has a nice efficiency gain. Miners have to track the set of output scripts that haven’t been
redeemed yet, and with P2SH outputs, the output scripts are now much smaller as they only specify a
hash. All of the complexity is pushed to the input scripts.

3.3 Applications of Bitcoin scripts

Now that we understand how Bitcoin scripts work, let’s take a look at some of the powerful
applications that can be realized with this scripting language. It turns out we can do many neat things
that will justify the complexity of having the scripting language instead of just specifying public keys.

Escrow transactions. Say Alice and Bob want to do business with each other — Alice wants to pay Bob
in Bitcoin for Bob to send some physical goods to Alice. The problem though is that Alice doesn’t want
to pay until after she’s received the goods, but Bob doesn’t want to send the goods until after he has
been paid. What can we do about that? A nice solution in Bitcoin that’s been used in practice is to
introduce a third party and do an escrow transaction.

Escrow transactions can be implemented quite simply using MULTISIG. Alice doesn’t send the money
directly to Bob, but instead creates a MULTISIG transaction that requires two of three people to sign
in order to redeem the coins. And those three people are going to be Alice, Bob, and some third party
arbitrator, Judy, who will come into play in case there’s any dispute. So Alice creates a 2-of-3
MULTISIG transaction that sends some coins she owns and specifies that they can be spent if any two
of Alice, Bob, and Judy sign. This transaction is included in the block chain, and at this point, these
coins are held in escrow between Alice, Bob, and Judy, such that any two of them can specify where
the coins should go. At this point, Bob is convinced that it’s safe to send the goods over to Alice, so
he’ll mail them or deliver them physically. Now in the normal case, Alice and Bob are both honest. So,
Bob will send over the goods that Alice is expecting, and when Alice receives the goods, Alice and Bob
both sign a transaction redeeming the funds from escrow, and sending them to Bob. Notice that in
this case where both Alice and Bob are honest, Judy never had to get involved at all. There was no
dispute, and Alice’s and Bob’s signatures met the 2-of-3 requirement of the MULTISIG transaction. So
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in the normal case, this isn’t that much less efficient than Alice just sending Bob the money. It requires
just one extra transaction on the block chain.

But what would have happened if Bob didn’t actually send the goods or they got lost in the mail? Or
perhaps the goods were different than what Alice ordered? Alice now doesn’t want to pay Bob
because she thinks that she got cheated, and she wants to get her money back. So Alice is definitely
not going to sign a transaction that releases the money to Bob. But Bob also may deny any
wrongdoing and refuse to sign a transaction that releases the money back to Alice. This is where Judy
needs to get involved. Judy’s going to have to decide which of these two people deserves the money.
If Judy decides that Bob cheated, Judy will be willing to sign a transaction along with Alice, sending the
money from escrow back to Alice. Alice’s and Judy’s signatures meet the 2-of-3 requirement of the
MULTISIG transaction, and Alice will get her money back. And, of course, if Judy thinks that Alice is at
fault here, and Alice is simply refusing to pay when she should, Judy can sign a transaction along with
Bob, sending the money to Bob. So Judy decides between the two possible outcomes. But the nice
thing is that she won’t have to be involved unless there’s a dispute.

Green addresses. Another cool application is what are called green addresses. Say Alice wants to pay
Bob, and Bob’s offline. Since he’s offline, Bob can’t go and look at the block chain to see if a
transaction that Alice is sending is actually there. It’s also possible that Bob is online, but doesn’t have
the time to go and look at the block chain and wait for the transactions to be confirmed. Remember
that normally we want a transaction to be in the block chain and be confirmed by six blocks, which
takes up to an hour, before we trust that it’s really in the block chain. But for some merchandise such
as food, Bob can’t wait an hour before delivering. If Bob were a street vendor selling hot dogs, it’s
unlikely that Alice would wait around for an hour to receive her food. Or maybe Bob for some other
reason doesn’t have any connection to the internet at all, and is thus not going to be able to check the
block chain.

To solve this problem of being able to send money using Bitcoin without the recipient being able to
access the block chain, we have to introduce another third party, which we’ll call the bank (in practice
it could be an exchange or any other financial intermediary). Alice is going to talk to her bank, and say,
“Hey, it’s me, Alice. I'm your loyal customer. Here’s my card or my identification. And I'd really like to
pay Bob here, could you help me out?” And the bank will say, “Sure. I’'m going to deduct some money
out of your account. And draw up a transaction from one of my green addresses over to Bob.”

So notice that this money is coming directly from the bank to Bob. Some of the money, of course,
might be in a change address going back to the bank. But essentially, the bank is paying Bob here from
a bank-controlled address, which we call a green address. Moreover, the bank guarantees that it will
not double-spend this money. So as soon as Bob sees that this transaction is signed by the bank, if he
trusts the bank’s guarantee not to double-spend the money, he can accept that that money will
eventually be his when it’s confirmed in the block chain.

Notice that this is not a Bitcoin-enforced guarantee. This is a real-world guarantee, and in order for
this system to work, Bob has to trust that the bank, in the real world, cares about their reputation,
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and won’t double-spend for that reason. And the bank will be able to say, “You can look at my history.
I've been using this green address for a long time, and I've never double spent. Therefore I'm very
unlikely to do so in the future.” Thus Bob no longer has to trust Alice, whom he may know nothing
about. Instead, he places his trust in the bank that they will not double-spend the money that they
sent him.

Of course, if the bank ever does double-spend, people will stop trusting its green address(es). In fact,
the two most prominent online services that implemented green addresses were Instawallet and Mt.
Gox, and both ended up collapsing. Today green addresses aren’t used very much. When the idea was
first proposed, it generated much excitement as a way to do payments more quickly and without
accessing the block chain. Now, however, people have become quite nervous about the idea and are
worried that it puts too much trust in the bank.

Efficient micro-payments. A third example of Bitcoin scripts is a way to do efficient micro-payments.
Say that Alice is a customer who wants to continually pay Bob small amounts of money for some
service that Bob provides. For example, Bob may be Alice’s wireless service provider, and requires her
to pay a small fee for every minute that she talks on her phone.

Creating a Bitcoin transaction for every minute that Alice speaks on the phone won’t work. That will
create too many transactions, and the transaction fees add up. If the value of each one of these
transactions is on the order of what the transaction fees are, Alice is going to be paying quite a high
cost to do this.

What we’d like is to be able to combine all these small payments into one big payment at the end. It
turns out that there’s a neat way to do this. We start with a MULTISIG transaction that pays the
maximum amount Alice would ever need to spend to an output requiring both Alice and Bob to sign
to release the coins. Now, after the first minute that Alice has used the service, or the first time Alice
needs to make a micropayment, she signs a transaction spending those coins that were sent to the
MULTISIG address, sending one unit of payment to Bob and returning the rest to Alice. After the next
minute of using the service, Alice signs another transaction, this time paying two units to Bob and
sending the rest to herself. Notice these are signed only by Alice, and haven’t been signed by Bob yet,
nor are they being published to the block chain. Alice will keep sending these transactions to Bob
every minute that she uses the service. Eventually, Alice will finish using the service, and tells Bob,
“I’'m done, please cut off my service.” At this point Alice will stop signing additional transactions. Upon
hearing this, Bob will say “Great. I'll disconnect your service, and I’ll take that last transaction that you
sent me, sign it, and publish that to the block chain.”

Since each transaction was paying Bob a little bit more, and Alice a little bit less, the final transaction
that Bob redeems pays him in full for the service that he provided and returns the rest of the money
to Alice. All those transactions that Alice signed along the way won’t make it to the block chain. Bob
doesn’t have to sign them. They'll just get discarded.
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Technically all of these transactions are double-spends. So unlike the case with green addresses
where we were specifically trying to avoid double-spends, with a strong guarantee, with this
micro-payment protocol, we’re actually generating a huge amount of potential double-spends. In
practice, however, if both parties are operating normally, Bob will never sign any transaction but the
last one, in which case the block chain won’t actually see any attempt at a double-spend.

There’s one other tricky detail: what if Bob never signs the last transaction? He may just say, “I'm
happy to let the coins sit there in escrow forever,” in which case, maybe the coins won’t move, but
Alice will lose the full value that she paid at the beginning. There's a very clever way to avoid this
problem using a feature that we mentioned briefly earlier, and will explain now.

Lock time. To avoid this problem, before the micro-payment protocol can even start, Alice and Bob
will both sign a transaction which refunds all of Alice’s money back to her, but the refund is “locked”
until some time in the future. So after Alice signs, but before she broadcasts, the first MULTISIG
transaction that puts her funds into escrow, she’ll want to get this refund transaction from Bob and
hold on to it. That guarantees that if she makes it to time t and Bob hasn’t signed any of the small
transactions that Alice has sent, Alice can publish this transaction which refunds all of the money
directly to her.

What does it mean that it’s locked until time t? Recall when we looked at the metadata in Bitcoin
transactions, that there was this lock_time parameter, which we had left unexplained. The way it
works is that if you specify any value other than zero for the lock time, it tells miners not to publish
the transaction until the specified lock time. The transaction will be invalid before either a specific

block number, or a specific point in time, based on the timestamps that are put into blocks. So this is a

way of preparing a transaction that can only be spent in the future if it isn’t already spent by then. It
works quite nicely in the micro-payment protocol as a safety valve for Alice to know that if Bob never
signs, eventually she’ll be able to get her money back.

Hopefully, these examples have shown you that we can do some neat stuff with Bitcoin scripts. We
discussed three simple and practical examples, but there are many others that have been researched.
One of them is multi-player lotteries, a very complicated multi-step protocol with lots of transactions
having different lock times and escrows in case people cheat. There are also some neat protocols that
utilize the scripting language to allow different people to get their coins together and mix them, so
that it’s harder to trace who owns which coin. We'll see that in detail in Chapter 6.

Smart contracts. The general term for contracts like the ones we saw in this section is smart
contracts. These are contracts for which we have some degree of technical enforcement in Bitcoin,
whereas traditionally they are enforced through laws or courts of arbitration. It’s a really cool feature
of Bitcoin that we can use scripts, miners, and transaction validation to realize the escrow protocol or
the micro-payment protocol without needing a centralized authority.

Research into smart contracts goes far beyond the applications that we saw in this section. There are
many types of smart contracts which people would like to be able to enforce but which aren’t
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supported by the Bitcoin scripting language today. Or at least, nobody has come up with a creative
way to implement them. As we saw, with a bit of creativity you can do quite a lot with the Bitcoin
script as it currently stands.

3.4 Bitcoin blocks

So far in this chapter we’ve looked at how individual transactions are constructed and redeemed. But
as we saw in chapter 2, transactions are grouped together into blocks. Why is this? Basically, it’s an
optimization. If miners had to come to consensus on each transaction individually, the rate at which
new transactions could be accepted by the system would be much lower. Also, a hash chain of blocks
is much shorter than a hash chain of transactions would be, since a large number of transactions can
be put into each block. This will make it much more efficient to verify the block chain data structure.

The block chain is a clever combination of two different hash-based data structures. The first is a hash
chain of blocks. Each block has a block header, a hash pointer to some transaction data, and a hash
pointer to the previous block in the sequence. The second data structure is a per-block tree of all of
the transactions that are included in that block. This is a Merkle tree and allows us to have a digest of
all the transactions in the block in an efficient way. As we saw in Chapter 1, to prove that a transaction
is included in a specific block, we can provide a path through the tree whose length is logarithmic in
the number of transactions in the block. To recap, a block consists of header data followed by a list of
transactions arranged in a tree structure.

Hash chain of blocks

Hash tree (Merkle tree) of

transactions in each block : :
| H(,) H()) H( ) H(Q :

/ ! : \
l transaction l | transaction ‘ ‘ transaction 1 | transaction |

Figure 3.8. The Bitcoin block chain contains two different hash structures. The first is a hash chain of
blocks that links the different blocks to one another. The second is internal to each block and is a
Merkle Tree of transactions within the blocks.
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The header mostly contains information related to the mining puzzle which we briefly discussed in the
previous chapter and will revisit in Chapter 5. Recall that the hash of the block header has to start
with a large number of zeros for the block to be valid. The header also contains a “nonce” that miners
can change, a time stamp, and “bits”, which is an indication of how difficult this block was to find. The
header is the only thing that’s hashed during mining. So to verify a chain of blocks, all we need to do is
look at the headers. The only transaction data that’s included in the header is the root of the
transaction tree — the “mrkl_root” field.

llinll : [
{

"prev_out":{
"hash":"000000..... 0000000",
"n":4294967295

3

"coinbase":"..."

¥
]
"out":[
{
"value":"25.03371419",
"scriptPubKey":"OPDUP OPHASH160 ... ”
}
]

Figure 3.9. coinbase transaction. A coinbase transaction creates new coins. It does not redeem a
previous output, and it has a null hash pointer indicating this. It has a coinbase parameter which can
contain arbitrary data. The value of the coinbase transaction is the block reward plus all of the
transaction fees included in this block.

Another interesting thing about blocks is that they have a special transaction in the Merkle tree called
the “coinbase” transaction. This is analogous to CreateCoins in Scroogecoin. So this is where the
creation of new coins in Bitcoin happens. It mostly looks like a normal transaction but with several
differences: (1) it always has a single input and a single output, (2) the input doesn’t redeem a
previous output and thus contains a null hash pointer, since it is minting new bitcoins and not
spending existing coins, (3) the value of the output is currently a little over 25 Bitcoins. The output
value is the miner’s revenue from the block. It consists of two components: a flat mining reward,
which is set by the system and which halves every 210,000 blocks (about 4 years), and the transaction
fees collected from every transaction included in the block. (4) There is a special “coinbase”
parameter, which is completely arbitrary — miners can put whatever they want in there.

Famously, in the very first block ever mined in Bitcoin, the coinbase parameter referenced a story in
the Times of London newspaper involving the Chancellor bailing out banks. This has been interpreted

89



as political commentary on the motivation for starting Bitcoin. It also serves as a sort of proof that the
first block was mined after the story came out on January 3, 2009. One way in which the coinbase
parameter has since been used is to signal support by miners for different new features.

To get a better feel for the block format and transaction format, the best way is to explore the block
chain yourself. There are many websites that make this data accessible, such as blockchain.info. You
can look at the graph of transactions, see which transactions redeem which other transactions, look
for transactions with complicated scripts, and look at the block structure and see how blocks refer to
other blocks. Since the block chain is a public data structure, developers have built pretty wrappers to
explore it graphically.

3.5 The Bitcoin network

So far we’ve been talking about the ability for participants to publish a transaction and get it into the
block chain as if this happens by magic. In fact this happens through the Bitcoin network. It's a
peer-to-peer network, and it inherits many ideas from peer-to-peer networks that have been
proposed for all sorts of other purposes. In the Bitcoin network, all nodes are equal. There is no
hierarchy, and there are no special nodes or master nodes. It runs over TCP and has a random
topology, where each node peers with other random nodes. New nodes can join at any time. In fact,
you can download a Bitcoin client today, spin up your computer as a node, and it will have equal
rights and capabilities as every other node on the Bitcoin network.

The network changes over time and is quite dynamic due to nodes entering and leaving. There isn’t an
explicit way to leave the network. Instead, if a node hasn’t been heard from in a while — three hours
is the duration that’s hardcoded into the common clients — other nodes start to forget it. In this way,
the network gracefully handles nodes going offline.

Recall that nodes connect to random peers and there is no geographic topology of any sort. Now say
you launch a new node and want to join the network. You start with a simple message to one node
that you know about. This is usually called your seed node, and there are a few different ways you can
look up lists of seed nodes to try connecting to. You send a special message, saying, “Tell me the
addresses of all the other nodes in the network that you know about.” You can repeat the process
with the new nodes you learn about as many times as you want. Then you can choose which ones to
peer with, and you’ll be a fully functioning member of the Bitcoin network. There are several steps
that involve randomness, and the ideal outcome is that you’re peered with a random set of nodes. To
join the network, all you need to know is how to contact one node that’s already on the network.

What is the network good for? To maintain the block chain, of course. So to publish a transaction, we
want to get the entire network to hear about it. This happens through a simple flooding algorithm,
sometimes called a gossip protocol. If Alice wants to pay Bob some money, her client creates and her
node sends this transaction to all the nodes it’s peered with. Each of those nodes executes a series of
checks to determine whether or not to accept and relay the transaction. If the checks pass, the node
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in turn sends it to all of its peer nodes. Nodes that hear about a transaction put it in a pool of
transactions which they’ve heard about but that aren’t on the block chain yet. If a node hears about a
transaction that’s already in its pool, it doesn’t further broadcast it. This ensures that the flooding
protocol terminates and transactions don’t loop around the network forever. Remember that every
transaction is identified uniquely by its hash, so it’s easy to look up a transaction in the pool.

When nodes hear about a new transaction, how do they decide whether or not they should propagate
it? There are four checks. The first and most important check is transaction validation — the
transaction must be valid with the current block chain. Nodes run the script for each previous output
being redeemed and ensure that the scripts return true. Second, they check that the outputs being
redeemed here haven’t already been spent. Third, they won’t relay an already-seen transaction, as
mentioned earlier. Fourth, by default, nodes will only accept and relay “standard” scripts based on a
small whitelist of scripts.

All these checks are just sanity checks. Well-behaving nodes all implement these to try to keep the
network healthy and running properly, but there’s no rule that says that nodes have to follow these
specific steps. Since it’s a peer-to-peer network, and anybody can join, there’s always the possibility
that a node might forward double-spends, non-standard transactions, or outright invalid transactions.
That’s why every node must do the checking for itself.

Since there is latency in the network, it’s possible that nodes will end up with a different view of the
pending transaction pool. This becomes particularly interesting and important when there is an
attempted double-spend. Let’s say Alice attempts to pay the same bitcoin to both Bob and Charlie,
and sends out two transactions at roughly the same time. Some nodes will hear about the Alice —
Bob transaction first while others will hear about the Alice — Charlie transaction first. When a node
hears either of these transactions, it will add it to its transaction pool, and if it hears about the other
one later it will look like a double-spend. The node will drop the latter transaction and won’t relay it
or add it to its transaction pool. As a result, the nodes will temporarily disagree on which transactions
should be put into the next block. This is called a race condition.

The good news is that this is perfectly okay. Whoever mines the next block will essentially break the
tie and decide which of those two pending transactions should end up being put permanently into a
block. Let’s say the Alice — Charlie transaction makes it into the block. When nodes with the Alice —
Bob transaction hear about this block, they’ll drop the transaction from their memory pools because it
is a double-spend. When nodes with the Alice — Charlie transaction hear about this block, they’ll
drop the transaction from their memory pools because it’s already made it into the block chain. So
there will be no more disagreement once this block propagates to the network.

Since the default behavior is for nodes to hang onto whatever they hear first, network position
matters. If two conflicting transactions or blocks get announced at two different positions in the
network, they’ll both begin to flood throughout the network and which transaction a node sees first
will depend on where it is in the network.
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Of course this assumes that every node implements this logic where they keep whatever they hear
first. But there’s no central authority enforcing this, and nodes are free to implement any other logic
they want for choosing which transactions to keep and whether or not to forward a transaction. We'll
look more closely at miner incentives in Chapter 5.

Sidebar: Zero-confirmation transactions and replace-by-fee. In Chapter 2 we looked at
zero-confirmation transactions, where the recipient accepts the transaction as soon as it is
broadcast on the network. This isn’t designed to be secure against double spends. But as we saw,
the default behavior for miners in the case of conflicting transactions is to include the transaction
they received first, and this makes double-spending against zero-confirmation transactions
moderately hard. As a result, and due to their convenience, zero-confirmation transactions have
become common.

Since 2013, there has been interest in changing the default policy to replace-by-fee (RBF) whereby
nodes will replace a pending transaction in their pool if they hear a conflicting transaction which
includes a higher fee. This is the rational behavior for miners, at least in a short-term sense, as it
gives them a better fee. However, replace-by-fee would make double-spending against
zero-confirmation attacks far easier in practice.

Replace-by-fee has therefore attracted controversy, both in terms of the technical question of
whether it is possible to prevent or deter double-spending in an RBF world, and the philosophical
question of whether Bitcoin should try to support zero-confirmation as best it can, or abandon it.
We won’t dive into the long-running controversy here, but Bitcoin has recently adopted “opt-in”
RBF whereby transactions can mark themselves (using the sequence-number field) as eligible for
replacement by higher-fee transactions.

So far we’ve been mostly discussing propagation of transactions. The logic for announcing new blocks,
whenever miners find a new block, is almost exactly the same as propagating a new transaction and it
is all subject to the same race conditions. If two valid blocks are mined at the same time, only one of
these can be included in the long term consensus chain. Ultimately, which of these blocks will be
included will depend on which blocks the other nodes build on top of, and the one that does not get
into the consensus chain will be orphaned.

Validating a block is more complex than validating transactions. In addition to validating the header
and making sure that the hash value is in the acceptable range, nodes must validate every transaction
included in the block. Finally, a node will forward a block only if it builds on the longest branch, based
on its perspective of what the block chain (which is really a tree of blocks) looks like. This avoids forks
building up. But just like with transactions, nodes can implement different logic if they want — they
may relay blocks that aren’t valid or blocks that build off of an earlier point in the block chain. This
would build a fork, but that’s okay. The protocol is designed to withstand that.
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Figure 3.10 Block propagation time. This graph shows the average time that it takes a block to reach
various percentages of the nodes in the network.

What is the latency of the flooding algorithm? The graph in Figure 3.10 shows the average time for
new blocks to propagate to every node in the network. The three lines show the 25th, the 50th, and
the 75th percentile block propagation time. As you can see, propagation time is basically proportional
to the size of the block. This is because network bandwidth is the bottleneck. The larger blocks take
over 30 seconds to propagate to most nodes in the network. So it isn’t a particularly efficient protocol.
On the Internet, 30 seconds is a pretty long time. In Bitcoin’s design, having a simple network with
little structure where nodes are equal and can come and go at any time took priority over efficiency.
So a block may need to go through many nodes before it reaches the most distant nodes in the
network. If the network were instead designed top-down for efficiency, we could make sure that the
path between any two nodes is short.

Size of the network. It is difficult to measure how big the network is since it is dynamic and there is no
central authority. A number of researchers have come up with estimates. On the high end, some say
that over a million IP addresses in a given month will, at some point, act, at least temporarily, as a
Bitcoin node. On the other hand, there seem to be only about 5,000 to 10,000 nodes that are
permanently connected and fully validate every transaction they hear. This may seem like a
surprisingly low number, but as of this writing there is no evidence that the number of fully validating
nodes is going up, and it may in fact be dropping.



Storage requirements. Fully validating nodes must stay permanently connected so as to hear about all
the data. The longer a node is offline, the more catching up it will have to do when it rejoins the
network. Such nodes also have to store the entire block chain and need a good network connection to
be able to hear every new transaction and forward it to peers. The storage requirement is currently in
the low tens of gigabytes (see Figure 3.11), well within the abilities of a single commaodity desktop
machine.

Blockchain Size
Source: blockchain.info
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Figure 3.11. Size of the block chain. Fully validating nodes must store the entire block chain, which as
of the end of 2014 is over 26 gigabytes.

Finally, fully validating nodes must maintain the entire set of unspent transaction outputs, which are
the coins available to be spent. Ideally this should be stored in RAM, so that upon hearing a new
proposed transaction on the network, the node can quickly look up the transaction outputs that it’s
attempting to claim, run the scripts, see if the signatures are valid, and add the transaction to the
transaction pool. As of mid-2014, there are over 44 million transactions on the block chain of which 12
million are unspent. Fortunately, that’s still small enough to fit in less than a gigabyte of RAM in an
efficient data structure.

Lightweight nodes. In contrast to fully validating nodes, there are lightweight nodes, also called thin
clients or Simple Payment Verification (SPV) clients. In fact, the vast majority of nodes on the Bitcoin
network are lightweight nodes. These differ from fully validating nodes in that they don’t store the
entire block chain. They only store the pieces that they need to verify specific transactions that they
care about. If you use a wallet program, it would typically incorporate an SPV node. The node
downloads the block headers and transactions that represent payments to your addresses.

An SPV node doesn’t have the security level of a fully validating node. Since the node has block
headers, it can check that the blocks were difficult to mine, but it can’t check to see that every
transaction included in a block is actually valid because it doesn’t have the transaction history and
doesn’t know the set of unspent transactions outputs. SPV nodes can only validate the transactions
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that actually affect them. So they’re essentially trusting the fully validating nodes to have validated all
the other transactions that are out there. This isn’t a bad security trade off. They’re assuming there
are fully validating nodes out there that are doing the hard work, and that if miners went through the
trouble to mine this block, which is a really expensive process, they probably also did some validation
to make sure that this block wouldn’t be rejected.

The cost savings of being an SPV node are huge. The block headers are only about 1/1,000 the size of
the block chain. So instead of storing a few tens of gigabytes, it’s only a few tens of megabytes. Even a
smartphone can easily act as an SPV node in the Bitcoin network.

Since Bitcoin rests on an open protocol, ideally there would be many different implementations that
interact with each other seamlessly. That way if there’s a bad bug in one, it’s not likely to bring down
the entire network. The good news is that the protocol has been successfully re-implemented. There
are implementations in C++ and Go, and people are working on quite a few others. The bad news is
that most of the nodes on the network are running the bitcoind library, written in C++, maintained by
the Bitcoin Core developers, and some of these nodes are running previous out-of-date versions that
haven’t been updated. In any event, most are running some variation of this one common client.

3.6 Limitations and improvements

Finally, we’ll talk about some built-in limitations to the Bitcoin protocol, and why it’s challenging to
improve them. There are many constraints hard-coded into the Bitcoin protocol, which were chosen
when Bitcoin was proposed in 2009, before anyone really had any idea that it might grow into a
globally-important currency. Among them are the limits on the average time per block, the size of
blocks, the number of signature operations in a block, and the divisibility of the currency, the total
number of Bitcoins, and the block reward structure.

The limitations on the total number of Bitcoins in existence, as well as the structure of the mining
rewards are very likely to never be changed because the economic implications of changing them are
too great. Miners and investors have made big bets on the system assuming that the Bitcoin reward
structure and the limited supply of Bitcoins will remain the way it was planned. If that changes, it will
have large financial implications for people. So the community has basically agreed that those aspects,
whether or not they were wisely chosen, will not change.

There are other changes that would seem to make everybody better off, because some initial design
choices don’t seem quite right with the benefit of hindsight. Chief among these are limits that affect
the throughput of the system. How many transactions can the Bitcoin network process per second?
This limitation comes from the hard coded limit on the size of blocks. Each block is limited to a
megabyte, about a million bytes. Each transaction is at least 250 bytes. Dividing 1,000,000 by 250, we
see that each block has a limit of 4,000 transactions, and given that blocks are found about every 10
minutes, we're left with about 7 transactions per second, which is all that the Bitcoin network can
handle. It may seem that changing these limits would be a matter of tweaking a constant in a source
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code file somewhere. However, it’s really hard to effect such a change in practice, for reasons that we
will explain shortly.

So how does seven transactions per second compare? It’s quite low compared to the throughput of
any major credit card processor. Visa’s network is said to handle about 2,000 transactions per second
around the world on average, and capable of handling 10,000 transactions per second during busy
periods. Even Paypal, which is newer and smaller than Visa, can handle 100 transactions per second at
peak times. That’s an order of magnitude more than Bitcoin.

Another limitation that people are worried about in the long term is that the choices of cryptographic
algorithms in Bitcoin are fixed. There are only a couple of hash algorithms available, and only one
signature algorithm, ECDSA, over a specific elliptic curve called secp256k1. There’s some concern that
over the lifetime of Bitcoin — which people hope will be very long — this algorithm might be broken.
Cryptographers might come up with a clever new attack that we haven’t foreseen which makes the
algorithm insecure. The same is true of the hash functions; in fact, in the last decade hash functions
have seen steady progress in cryptanalysis. SHA-1, which is included in Bitcoin, already has some
known cryptographic weaknesses, albeit not fatal. To change this, we would have to extend the
Bitcoin scripting language to support new cryptographic algorithms.

Changing the protocol. How can we go about introducing new features into the Bitcoin protocol? You
might think that this is simple — just release a new version of the software, and tell all nodes to
upgrade. In reality, though, this is quite complicated. In practice, it’s impossible to assume that every
node would upgrade. Some nodes in the network would fail to get the new software or fail to get it in
time. The implications of having most nodes upgrade while some nodes are running the old version
depends very much on the nature of the changes in the software. We can differentiate between two
types of changes: those that would cause a hard fork and those that would cause a soft fork.

Hard forks. One type of change that we can make introduces new features that were previously
considered invalid. That is, the new version of the software would recognize blocks as valid that the
old software would reject. Now consider what happens when most nodes have upgraded, but some
have not. Soon the longest branch will contain blocks that are considered invalid by the old nodes. So
the old nodes will go off and work on a branch of the block chain that excludes blocks with the new
feature. Until they upgrade their software, they’ll consider their (shorter) branch to be the longest
valid branch.

This type of change is called a hard forking change because it makes the block chain split. Every node
in the network will be on one or the other side of it based on which version of the protocol it’s
running. Of course, the branches will never join together again. This is considered unacceptable by the
community since old nodes would effectively be cut out of the Bitcoin network if they don’t upgrade
their software.

Soft forks. A second type of change that we can make to Bitcoin is adding features that make
validation rules stricter. That is, they restrict the set of valid transactions or the set of valid blocks such
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that the old version would accept all of the blocks, whereas the new version would reject some. This
type of change is called a soft fork, and it can avoid the permanent split that a hard fork introduces.

Consider what happens when we introduce a new version of the software with a soft forking change.
The nodes running the new software will be enforcing some new, tighter, set of rules. Provided that
the majority of nodes switch over to the new software, these nodes will be able to enforce the new
rules. Introducing a soft fork relies on enough nodes switching to the new version of the protocol that
they’ll be able to enforce the new rules, knowing that the old nodes won’t be able to enforce the new
rules because they haven’t heard of them yet.

There is a risk that old miners might mine invalid blocks because they include some transactions that
are invalid under the new, stricter, rules. But the old nodes will at least figure out that some of their
blocks are being rejected, even if they don’t understand the reason. This might prompt their
operators to upgrade their software. Furthermore, if their branch gets overtaken by the new miners,
the old miners switch to it. That’s because blocks considered valid by new miners are also considered
valid by old miners. Thus, there won’t be a hard fork; instead, there will be many small, temporary
forks.

The classic example of a change that was made via soft fork is pay-to-script-hash, which we discussed
earlier in this chapter. Pay-to-script-hash was not present in the first version of the Bitcoin protocol.
This is a soft fork because from the view of the old nodes, a valid pay-to-script-hash transaction would
still verify correctly. As interpreted by the old nodes, the script is simple — it hashes one data value
and checks if the hash matches the value specified in the output script. Old nodes don’t know to do
the (now required) additional step of running that value itself to see if it is a valid script. We rely on
new nodes to enforce the new rules, i.e. that the script actually redeems this transaction.

So what could we possibly add with a soft fork? Pay-to-script-hash was successful. It’s also possible
that new cryptographic schemes could be added by a soft fork. We could also add some extra
metadata in the coinbase parameter that had some meaning. Today, any value is accepted in the
coinbase parameter. But we could, in the future, say that the coinbase has to have some specific
format. One idea that’s been proposed is that, in each new block, the coinbase includes the Merkle
root of a tree containing the entire set of unspent transactions. It would only result in a soft fork,
because old nodes might mine a block that didn’t have the required new coinbase parameter that got
rejected by the network, but they would catch up and join the main chain that the network is mining.

Other changes might require a hard fork. Examples of this are adding new opcodes to Bitcoin,
changing the limits on block or transactions size, or various bug fixes. Fixing the bug we discussed
earlier, where the MULTISIG instruction pops an extra value off the stack, would also require a hard
fork. That explains why, even though it’s an annoying bug, it’s much easier to leave it in the protocol
and have people work around it rather than have a hard-fork change to Bitcoin. Hard forking changes,
even though they would be nice, are very unlikely to happen within the current climate of Bitcoin. But
many of these ideas have been tested out and proved to be successful in alternative cryptocurrencies,
which start over from scratch. We'll be talking about those in a lot more detail in Chapter 10.
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Sidebar: Bitcoin’s block size conundrum. Due to Bitcoin’s growing popularity, as of early 2016 it has
become common for the 1-megabyte space in blocks to be filled up within the period between
blocks (especially when, due to random chance, a block take longer than 10 minutes to find)first,
resulting in some transactions having to wait one or more additional blocks to make their way into
the block chain. Increasing the block size limit will require a hard fork.

The question of whether and how to address the block chain’s limited bandwidth for transactions
has gripped the Bitcoin community. The discussion started years ago, but with little progress
toward a consensus, it has gradually gotten more acrimonious, escalating into a circus. We'll discuss
Bitcoin’s community, politics, and governance in Chapter 7.

Depending on the resolution of the block-size problem, some of the details in this chapter might
become slightly out of date. The technical details of increasing Bitcoin’s transaction-processing
capacity are interesting, and we encourage you to read more online.

At this point, you should be familiar with the technical mechanics of Bitcoin and how a Bitcoin node
operates. But, human beings aren’t Bitcoin nodes, and you’re never going to run a Bitcoin node in
your head. So how do you, as a human, actually interact with this network to get it to be useable as a
currency? How do you find a node to inform about your transaction? How do you get Bitcoins in
exchange for cash? How do you store your Bitcoins? All of these questions are crucial for building a
currency that will actually work for people, as opposed to just software, and we will answer these
guestions in the next chapter.

Further Reading

Online resources. In this chapter, we discussed a lot of technical details, and you may find it difficult
to absorb them all at once. To supplement the material in this chapter, it’s useful to go online and
see some of the things we discussed in practice. There are numerous websites that allow you to
examine blocks and transactions and see what they look like. One such “blockchain explorer” is the
website blockchain.info.

A developer-focused book on Bitcoin that covers the technical details well (especially Chapters 5, 6,
and 7):

Antonopoulos, Andreas M. Mastering Bitcoin: unlocking digital cryptocurrencies. O'Reilly Media,
2014.
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Exercises

1. Transaction validation: Consider the steps involved in processing Bitcoin transactions. Which
of these steps are computationally expensive? If you’re an entity validating many transactions
(say, a miner) what data structure might you build to help speed up verification?

2. Bitcoin script: For the following questions, you’re free to use non-standard transactions and
op codes that are currently disabled. You can use <data> as a shorthand to represent data
values pushed onto the stack. For a quick reference, see here: https://en.bitcoin.it/wiki/Script.

a. Write the Bitcoin ScriptPubKey script for a transaction that can be redeemed by
anybody who supplies a square root of 1764.

b. Write a corresponding ScriptSig script to redeem your transaction.

c. Suppose you wanted to issue a new RSA factoring challenge by publishing a
transaction that can be redeemed by anybody who can factor a 1024-bit RSA number
(RSA numbers are the product of two large, secret prime numbers). What difficulties
might you run into?

3. Bitcoin script Il: Alice is backpacking and is worried about her devices containing private keys
getting stolen. So she would like to store her bitcoins in such a way that they can be
redeemed via knowledge of only a password. Accordingly, she stores them in the following
ScriptPubKey address:

OP_SHA1
<0x084a3501edef6845f2f1e4198ec3a2b81cf5c6bc>
OP_EQUALVERIFY

a. Write a ScriptSig script that will successfully redeem this transaction. [Hint: it should

only be one line long.]

b. Explain why this is not a secure way to protect Bitcoins using a password.
c. Would implementing this using Pay-to-script-hash (P2SH) fix the security issue(s) you
identified? Why or why not?
4. Bitcoin script lll.
a. Write a ScriptPubKey that requires demonstrating a SHA-256 collision to redeem.
b. (Hard) write a corresponding ScriptSig that will successfully redeem this transaction.
5. Burning and encoding
a. What are some ways to burn bitcoins, i.e., to make a transaction unredeemable?
Which of these allow a proof of burn, i.e., convincing any observer that no one can
redeem such a transaction?
b. What are some ways to encode arbitrary data into the block chain? Which of these
result in burnt bitcoins?
[Hint: you have more control over the contents of the transaction “out” field than
might at first appear.]
c. One user encoded some JavaScript code into the block chain. What might have been a
motivation for doing this?
6. Green addresses: One problem with green addresses is that there is no punishment against
double-spending within the Bitcoin system itself. To solve this, you decide to design an altcoin
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called “GreenCoin” that has built-in support for green addresses. Any attempt at double
spending from addresses (or transaction outputs) that have been designated as “green” must
incur a financial penalty in a way that can be enforced by miners. Propose a possible design
for GreenCoin.
SPV proofs: Suppose Bob the merchant runs a lightweight client and receives the current head
of the block chain from a trusted source.
a. What information should Bob’s customers provide to prove that their payment to Bob
has been included in the block chain? Assume Bob requires 6 confirmations.
b. Estimate how many bytes this proof will require. Assume there are 1024 transactions
in each block.
Adding new features: Assess whether the following new features could be added using a hard
fork or a soft fork:
a. Adding a new OP_SHAS3 script instruction
b. Disabling the OP_SHA1 instruction
c. Arequirement that each miner include a Merkle root of unspent transaction outputs
(UTXOs) in each block
d. Arequirement that all transactions have their outputs sorted by value in ascending
order
More forking
a. The most prominent Bitcoin hard fork was a transient one caused by the version 0.8
bug. How many blocks were abandoned when the fork was resolved?
b. The most prominent Bitcoin soft fork was the addition of pay-to-script-hash. How
many blocks were orphaned because of it?
c. Bitcoin clients go into “safe mode” when they detect that the chain has forked. What
heuristic(s) could you use to detect this?
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Chapter 4: How to Store and Use Bitcoins

This chapter is about how we store and use bitcoins in practice.

4.1 Simple Local Storage

Let’s begin with the simplest way of storing bitcoins, and that is simply putting them on a local device.
As a recap, to spend a bitcoin you need to know some public information and some secret
information. The public information is what goes on the block chain — the identity of the coin, how
much it's worth, and so on. The secret information is the secret key of the owner of the bitcoin,
presumably, that’s you. You don’t need to worry too much about how to store the public information
because you can always get it back when you need to. But the secret signing key is something you’d
better keep track of. So in practice storing your bitcoins is all about storing and managing your keys.

Storing bitcoins is really all about storing and managing Bitcoin secret keys.

When figuring out how to store and manage keys, there are three goals to keep in mind. The first is
availability: being able to actually spend your coins when you want to. The second is security: making
sure that nobody else can spend your coins. If someone gets the power to spend your coins they
could just send your coins to themselves, and then you don't have the coins anymore. The third goal is
convenience, that is, key management should be relatively easy to do. As you can imagine, achieving
all three simultaneously can be a challenge.

Different approaches to key management offer different trade-offs between availability, security,
and convenience.

The simplest key management method is storing them on a file on your own local device: your
computer, your phone, or some other kind of gadget that you carry, or own, or control. This is great
for convenience: having a smartphone app that allows spending coins with the push of a few buttons
is hard to beat. But this isn’t great for availability or security — if you lose the device, if the device
crashes, and you have to wipe the disc, or if your file gets corrupted, your keys are lost, and so are
your coins. Similarly for security: if someone steals or breaks into your device, or it gets infected with
malware, they can copy your keys and then they can send all your coins to themselves.

In other words, storing your private keys on a local device, especially a mobile device, is a lot like
carrying around money in your wallet or in your purse. It's useful to have some spending money, but
you don't want to carry around your life savings because you might lose it, or somebody might steal it.
So what you typically do is store a little bit of information/a little bit of money in your wallet, and keep
most of your money somewhere else.
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Wallets. If you're storing your bitcoins locally, you’d typically use wallet software, which is software
that keeps track of all your coins, manages all the details of your keys, and makes things convenient
with a nice user interface. If you want to send $4.25 worth of bitcoins to your local coffee shop the
wallet software would give you some easy way to do that. Wallet software is especially useful because
you typically want to use a whole bunch of different addresses with different keys associated with
them. As you may remember, creating a new public/private key pair is easy, and you can utilize this to
improve your anonymity or privacy. Wallet software gives you a simple interface that tells you how
much is in your wallet. When you want to spend bitcoins, it handles the details of which keys to use
and how to generate new addresses and so on.

Encoding keys: base 58 and QR codes. To spend or receive bitcoins, you also need a way to exchange
an address with the other party — the address to which bitcoins are to be sent. There are two main
ways in which addresses are encoded so that they can be communicated from receiver to spender: as
a text string or as a QR code.

To encode an address as a text string, we take the bits of the key and convert it from a binary number
to a base 58 number. Then we use a set of 58 characters to encode each digits as a character; this is
called base58 notation. Why 58? Because that’s the number we get when we include the upper case
letters, lower case letters, as well as digits as characters, but leave out a few that might be confusing
or might look like another character. For example, capital letter 'O' and zero are both taken out
because they look too much alike. This allows encoded addresses to be read out over the phone or
read from printed paper and typed in, should that be necessary. Ideally such manual methods of
communicating addresses can be avoided through methods such as QR codes, which we now discuss.

1A1zP1eP5QGefi2DMPTFTL5SLmv7DivfNa

The address that received the very first Bitcoin block reward in the genesis block, base58 encoded.

Figure 4.1: a QR code representing an actual Bitcoin address. Feel free to send us some bitcoins.

The second method for encoding a Bitcoin address is as a QR code, a simple kind of 2-dimensional
barcode. The advantage of a QR code is that you can take a picture of it with a smartphone and wallet
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software can automatically turn the barcode into the a sequence of bits that represents the
corresponding Bitcoin address. This is useful in a store, for example: the check-out system might
display a QR code and you can pay with your phone by scanning the code and sending coins to that
address. It is also useful for phone-to-phone transfers.

Vanity addresses. Some individuals or merchants like to have an address that starts with some
human-meaningful text. For example, the gambling website Satoshi Bones has users send money to
addresses containing the string “bones” in positions 2--6, such as
lbonesEeTcABPjLzAb1VkFgySY6Zqu3sX (all regular addresses begin with the character 1,
indicating pay-to-pubkey-hash.)

We said that addresses are outputs of a hash function, which produces random-looking data, so how
did the string “bones” get in there? If Satoshi Bones were simply making up these addresses, lacking
the ability to invert hash function, they wouldn’t know the corresponding private keys and hence
wouldn’t actually control those addresses. Instead, they repeatedly generated private keys until they
got lucky and found one which hashed to this pattern. Such addresses are called vanity addresses and
there are tools to generate them.

How much work does this take? Since there are 58 possibilities for every character, if you want to find
an address which starts with a specific k-character string, you’ll need to generate 58" addresses on
average until you get lucky. So finding an address starting with “bones” would have required
generating over 600 million addresses! This can be done on a normal laptop nowadays. But it gets
exponentially harder with each extra character. Finding a 15-character prefix would require an
infeasible amount of computation and (without finding a break in the underlying hash function)
should be impossible.

Sidebar: Speeding up vanity address generation. In Bitcoin, if we call the private key x, the public
key is g*. The exponentiation represents what’s called scalar multiplication in an elliptic curve
group. The address is H(g*), the hash of the public key. We won’t get into the details here, but
exponentiation is the slow step in address generation.

The naive way to generate vanity addresses would be to pick a pseudorandom x, compute H(g"),
and repeat if that address doesn’t work. A much faster approach is to try x+1 if the first x fails, and
continue incrementing instead of picking a fresh x each time. That’s because g** = x g*, and we’ve
already computed g* so we only need a multiplication operation for each address instead of
exponentiation, and that’s much faster. In fact, it speeds up vanity address generation by over two
orders of magnitude.

4.2 Hot and Cold Storage

As we just saw, storing bitcoins on your computer is like carrying money around in your wallet or your
purse. This is called “hot storage”. It's convenient but also somewhat risky. On the other hand, “cold
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storage” is offline. It's locked away somewhere. It's not connected to the internet, and it's archival. So
it’s safer and more secure, but of course, not as convenient. This is similar to how you carry some
money around on your person, but put your life's savings somewhere safer.

To have separate hot and cold storage, obviously you need to have separate secret keys for each —
otherwise the coins in cold storage would be vulnerable if the hot storage is compromised. You'll
want to move coins back and forth between the hot side and the cold side, so each side will need to
know the other’s addresses, or public keys.

Cold storage is not online, and so the hot storage and the cold storage won't be able to connect to
each other across any network. But the good news is that cold storage doesn’t have to be online to
receive coins — since the hot storage knows the cold storage addresses, it can send coins to cold
storage at any time. At any time if the amount of money in your hot wallet becomes uncomfortably
large, you can transfer a chunk of it over to cold storage, without putting your cold storage at risk by
connecting to the network. Next time the cold storage connects it will be able to receive from the
block chain information about those transfers to it and then the cold storage will be able to do what it
wants with those coins.

But there’s a little problem when it comes to managing cold storage addresses. On the one hand, as
we saw earlier, for privacy and other reasons we want to be able to receive each coin at a separate
address with different secret keys. So whenever we transfer a coin from the hot side to the cold side
we'd like to use a fresh cold address for that purpose. But because the cold side is not online we have
to have some way for the hot side to find out about those addresses.

The blunt solution is for the cold side to generate a big batch of addresses all at once and send those
over for the hot side to use them up one by one. The drawback is that we have to periodically
reconnect the cold side in order to transfer more addresses.

Hierarchical wallets. A more effective solution is to use a hierarchical wallet. It allows the cold side to
use an essentially unbounded number of addresses and the hot side to know about these addresses,
but with only a short, one-time communication between the two sides. But it requires a little bit of
cryptographic trickery.

To review, previously when we talked about key generation and digital signatures back in chapter 1,
we looked at a function called generateKeys that generates a public key (which acts as an address)
and a secret key. In a hierarchical wallet, key generation works differently. Instead of generating a
single address we generate what we'll call address generation info, and rather than a private key we
generate what we'll call private key generation info. Given the address generation info, we can
generate a sequence of addresses: we apply an address generation function that takes as input the
address generation info and any integer i and generates the i'th address in the sequence. Similarly we
can generate a sequence of private keys using the private key generation info.
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The cryptographic magic that makes this useful is that for every i, the i'th address and i’th secret key
“match up” — that is, the i'th secret key controls, and can be used to spend, bitcoins from the /'th
address just as if the pair were generated the old fashioned way. So it’s as if we have a sequence of
regular key pairs.

The other important cryptographic property here is security: the address generation info doesn't leak
any information about the private keys. That means that it's safe to give the address generation info
to anybody, and so that anybody can be enabled to generate the 'i'th key.

Now, not all digital signature schemes that exist can be modified to support hierarchical key
generation. Some can and some can't, but the good news is that the digital signature scheme used by
Bitcoin, ECDSA, does support hierarchical key generation, allowing this trick. That is, the cold side
generates arbitrarily many keys and the hot side generates the corresponding addresses.

hot side

address I ; il
gen info slil address
generateKeysHier
private key |_ — I ik
gen info g y key

f

cold side [ |

Figure 4.2: Schema of a hierarchical wallet. The cold side creates and saves private key generation
info and address generation info. It does a one-time transfer of the latter to the hot side. The hot side
generates a new address sequentially every time it wants to send coins to the cold side. When the
cold side reconnects, it generates addresses sequentially and checks the block chain for transfers to
those addresses until it reaches an address that hasn’t received any coins. It can also generate private
keys sequentially if it wants to send some coins back to the hot side or spend them some other way.

Here’s how it works. Recall that normally an ECDSA private key is a random number x and the
corresponding public key is g*. For hierarchical key generation, we’ll need two other random values k
and y.
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Private key generationinfo:  k, x,y

i private key: x.=y+H(k [ i)
Address generation info: k, g’

i"™ public key: g =gtk In.gr
i address: H(g-)

This has all the properties that we want: each side is able to generate its sequence of keys, and the
corresponding keys match up because (because the public key corresponding to a private key x is g*).
It has one other property that we haven’t talked about: when you give out the public keys, those keys
won’t be linkable to each other, that is, it won't be possible to infer that they come from the same
wallet. The straw-man solution of having the cold side generate a big batch of addresses does have
this property, but we had to take care to preserve it when with the new technique considering that
the keys aren’t in fact independently generated. This property is important for privacy and anonymity,
which will be the topic of Chapter 6.

Here we have two levels of security, with the hot side being at a lower level. If the hot side is
compromised, the unlinkability property that we just discussed will be lost, but the private keys (and
the bitcoins) are still safe. In general, this scheme supports arbitrarily many security levels --- hence
“hierarchical” --- although we haven’t seen the details. This can be useful, for instance, when there
are multiple levels of delegation within a company.

Now let’s talk about the different ways in which cold information — whether one or more keys, or
key-generation info — can be stored. The first way is to store it in some kind of device and put that
device in a safe. It might be a laptop computer, a mobile phone or tablet, or a thumb drive. The
important thing is to turn the device off and lock it up, so that if somebody wants to steal it they have
to break into the locked storage.

Brain wallet. The second method we can use is called a brain wallet. This is a way to control access to
bitcoins using nothing but a secret passphrase. This avoids the need for hard drives, paper, or any
other long-term storage mechanism. This property can be particularly useful in situations where you
have poor physical security, perhaps when you’re traveling internationally.

The key trick behind a brain wallet is to have a predictable algorithm for turning a passphrase into a
public and private key. For example, you could hash the passphrase with a suitable hash function to
derive the private key, and given the private key, the public key can be derived in a standard way.
Further, combining this with the hierarchical wallet technique we saw earlier, we can generate an
entire sequence of addresses and private keys from a passphrase, thus enabling a complete wallet.

However, an adversary can also obtain all private keys in a brain wallet if they can guess the
passphrase. As always in computer security, we must assume that the adversary knows the procedure
you used to generate keys, and only your passphrase provides security. So the adversary can try
various passphrases and generate addresses using them; if he finds any unspent transactions on the
block chain at any of those addresses, he can immediately transfer them to himself. The adversary
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may never know (or care) who the coins belonged to and the attack doesn’t require breaking into any
machines. Guessing brain wallet passphrases is not directed toward specific users, and further, leaves
no trace.

Furthermore, unlike the task of guessing your email password which can be rate-limited by your email
server (called online guessing), with brain wallets the attacker can download the list of addresses with
unredeemed coins and try as many potential passphrases as they have the computational capacity to
check. Note that the attacker doesn’t need to know which addresses correspond to brain wallets. This
is called offline guessing or password cracking. It is much more challenging to come up with
passphrases that are easy to memorize and yet won’t be vulnerable to guessing in this manner. One
secure way to generate a passphrase is to have an automatic procedure for picking a random 80-bit
number and turning that number into a passphrase in such a way that different numbers result in
different passphrases.

Sidebar: generating memorable passphrases. One passphrase-generation procedure that gives
about 80 bits of entropy is to pick a random sequence of 6 words from among the 10,000 most
common English words (6 X log,(10000) is roughly 80). Many people find these easier to memorize
than a random string of characters. Here are a couple of passphrases generated this way.

worn till alloy focusing okay reducing
earth dutch fake tired dot occasions

In practice, it is also wise to use a deliberately slow function to derive the private key from the
passphrase to ensure it takes as long as possible for the attacker to try all possibilities. This is known
as key streching. To create a deliberately slow key-derivation function, we can take a fast
cryptographic hash function like SHA-256 and compute say 2% iterations of it, multiplying the
attacker’s workload by a factor of 2%. Of course, if we make it too slow it will start to become
annoying to the user as their device must re-compute this function any time they want to spend coins
from their brain wallet.

If a brain wallet passphrase is inaccessible — say it’s been forgotten, hasn’t been written down, and
can’t be guessed — then the coins are lost forever.

Paper wallet. The third option is what's called a paper wallet. We can print the key material to paper
and then put that paper into a safe or secure place. Obviously, the security of this method is just as
good or bad as the physical security of the paper that we're using. Typical paper wallets encode both
the public and private key in two ways: as a 2D barcode and in base 58 notation. Just like with a brain
wallet, storing a small amount of key material is sufficient to re-create a wallet.
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notation. Observe that the private key is behind a tamper-evident seal.

Tamper-resistant device. The fourth way that we can store offline information is to put it in some
kind of tamper-resistant device. Either we put the key into the device or the device generates the key;
either way, the device is designed so that there's no way it will output or divulge the key. The device
instead signs statements with the key, and does so when we, say, press a button or give it some kind
of password. One advantage is that if the device is lost or stolen we'll know it, and the only way the
key can be stolen is if the device is stolen. This is different from storing your key on a laptop.

In general, people might use a combination of four of these methods in order to secure their keys. For
hot storage, and especially for hot storage holding large amounts of bitcoins, people are willing to
work pretty hard and come up with novel security schemes in order to protect them, and we'll talk a
little bit about one of those more advanced schemes in the next section.

4.3 Splitting and Sharing Keys

Up to now we've looked at different ways of storing and managing the secret keys that control
bitcoins, but we've always put a key in a single place — whether locked in a safe, or in software, or on
paper. This leaves us with a single point of failure. If something goes wrong with that single storage
place then we're in trouble. We could create and store backups of the key material, but while this
decreases the risk of the key getting lost or corrupted (availability), it increases the risk of theft
(security). This trade-off seems fundamental. Can we take a piece of data and store it in such a way
that availability and security increase at the same time? Remarkably, the answer is yes, and it is once
again a trick that uses cryptography, called secret sharing.

Here’s the idea: we want to divide our secret key into some number N of pieces. We want to do it in
such a way that if we're given any K of those pieces then we'll be able to reconstruct the original
secret, but if we're given fewer than K pieces then we won't be able to learn anything about the
original secret.
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Given this stringent requirement, simply “cutting up” the secret into pieces won’t work because even
a single piece gives some information about the secret. We need something cleverer. And since we’re
not cutting up the secret, we’ll call the individual components “shares” instead of pieces.

Let’s say we have N=2 and K=2. That means we're generating 2 shares based on the secret, and we
need both shares to be able to reconstruct the secret. Let’s call our secret S, which is just a big (say
128-bit) number. We could generate a 128-bit random number R and make the two shares be R and S
@ R. (® represents bitwise XOR). Essentially, we’ve “encrypted” S with a one-time pad, and we store
the key (R) and the ciphertext (S ® R) in separate places. Neither the key nor the ciphertext by itself
tells us anything about the secret. But given the two shares, we simply XOR them together to
reconstruct the secret.

This trick works as long as N and K are the same — we’d just need to generate N-1 different random
numbers for the first N-1 shares, and the final share would be the secret XOR’d with all other N-1
shares. But if N is more than K, this doesn’t work any more, and we need some algebra.

'y
y
7 135 5595)
(2, S+2R)
(1, S+R)
(0, S)
X

Figure 4.4: Geometric illustration of 2-out-of-N secret sharing. S represents the secret, encoded as a
(large) integer. The green line has a slope chosen at random. The orange points (specifically, their
Y-coordinates S+R, S+2R, ...) correspond to shares. Any two orange points are sufficient to reconstruct
the red point, and hence the secret. All arithmetic is done modulo a large prime number.

Take a look at Figure 4.4. What we’ve done here is to first generate the point (0, S) on the Y-axis, and
then drawn a line with a random slope through that point. Next we generate a bunch points on that
line, as many as we want. It turns out that this is a secret sharing of S with N being the number of
points we generated and K=2.
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Why does this work? First, if you’re given two of the points generated, you can draw a line through
them and see where it meets the Y-axis. That would give you S. On the other hand, if you’re given only
a single point, it tells you nothing about S, because the slope of the line is random. Every line through
your point is equally likely, and they would all intersect the Y-axis at different points.

There’s only one other subtlety: to make the math work out, we have to do all our arithmetic modulo
a large prime number P. It doesn't need to be secret or anything, just really big. And the secret S has
to be between 0 and P-1, inclusive. So when we say we generate points on the line, what we mean is
that we generate a random value R, also between 0 and P-1, and the points we generate are

x=1, y=(S+R) mod P

x=2, y=(S+2R) mod P

x=3, y=(S+3R) mod P
and so on. The secret corresponds to the point x=0, y=(S+0*R) mod P, which is just x=0, y=S.

What we’ve seen is a way to do secret sharing with K=2 and any value of N. This is already pretty good
— if N=4, say, you can divide your secret key into 4 shares and put them on 4 different devices so that
if someone steals any one of those devices, they learn nothing about your key. On the other hand,
even if two of those devices are destroyed in a fire, you can reconstruct the key using the other two.
So as promised, we’ve increased both availability and security.

But we can do better: we can do secret sharing with any N and K as long as K is no more than N. To
see how, let’s go back to the figure. The reason we used a line instead of some other shape is that a
line, algebraically speaking, is a polynomial of degree 1. That means that to reconstruct a line we need
two points and no fewer than two. If we wanted K=3, we would have used a parabola, which is a
quadratic polynomial, or a polynomial of degree 2. Exactly three points are needed to construct a
guadratic function. We can use the table below to understand what’s going on.

Equation Degree Shape Random parameters Number of points (K)
needed to recover S

(S+RX) mod P 1 Line R 2
(S+R,X + R, X?) mod P 2 Parabola Ry R, 3
(S + R,X + R,X2 + R,X) mod P 3 Cubic R, R, R, 4

Table 4.1: The math behind secret sharing. Representing a secret via a series of points on a random
polynomial curve of degree K-1 allows the secret to be reconstructed if, and only if, at least K of the
points (“shares”) are available.
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There is a formula called Lagrange interpolation that allows you to reconstruct a polynomial of degree
K-1 from any K points on its curve. It’s an algebraic version (and a generalization) of the geometric
intuition of drawing a straight line through two points with a ruler. As a result of all this, we have a
way to store any secret as N shares such that we’re safe even if an adversary learns up to K-1 of them,
and at the same time we can tolerate the loss of up to N-K of them.

None of this is specific to Bitcoin, by the way. You can secret-share your passwords right now and give
shares to your friends or put them on different devices. But no one really does this with secrets like
passwords. Convenience is one reason; another is that there are other security mechanisms available
for important online accounts, such as two-factor security using SMS verification. But with Bitcoin, if
you’re storing your keys locally, you don’t have those other security options. There’s no way to make
the control of a Bitcoin address dependent on receipt of an SMS message. The situation is different
with online wallets, which we’ll look at in the next section. But not too different — it just shifts the
problem to a different place. After all, the online wallet provider will need some way to avoid a single
point of failure when storing their keys.

Threshold cryptography. But there’s still a problem with secret sharing: if we take a key and we split it
up in this way and we then want to go back and use the key to sign something, we still need to bring
the shares together and recalculate the initial secret in order to be able to sign with that key. The
point where we bring all the shares together is still a single point of vulnerability where an adversary
might be able to steal the key.

Cryptography can solve this problem as well: if the shares are stored in different devices, there’s a
way to produce Bitcoin signatures in a decentralized fashion without ever reconstructing the private
key on any single device. This is called a “threshold signature.” The best use-case is a wallet with
two-factor security, which corresponds to the case N=2 and K=2. Say you’ve configured your wallet to
split its key material between your desktop and your phone. Then you might initiate a payment on
your desktop, which would create a partial signature and send it to your phone. Your phone would
then alert you with the payment details — recipient, amount, etc. — and request your confirmation. If
the details check out, you’d confirm, and your phone would complete the signature using its share of
the private key and broadcast the transaction to the block chain. If there were malware on your
desktop that tried to steal your bitcoins, it might initiate a transaction that sent the funds to the
hacker’s address, but then you’d get an alert on your phone for a transaction you didn’t authorize,
and you’d know something was up. The mathematical details behind threshold signatures are
complex and we won’t discuss them here.

Multi-signatures. There’s an entirely different option for avoiding a single point of failure:
multi-signatures, which we saw earlier in Chapter 3. Instead of taking a single key and splitting it,
Bitcoin script directly allows you to stipulate that control over an address be split between different
keys. These keys can then be stored in different locations and the signatures produced separately. Of
course, the completed, signed transaction will be constructed on some device, but even if the
adversary controls this device, all that he can do is to prevent it from being broadcast to the network.
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He can’t produce valid multi-signatures of some other transaction without the involvement of the
other devices.

As an example, suppose that Andrew, Arvind, Ed, Joseph, and Steven, the authors of this book, are
co-founders of a company — perhaps we started it with the copious royalties from the sale of this
free book — and the company has a lot of bitcoins. We might use multi-sig to protect our large store
of bitcoins. Each of the five of us will generate a key pair, and we’ll protect our cold storage using
3-out-of-5 multi-sig, which means that three of us must sign to create a valid transaction.

As a result, we know that we're relatively secure if the five of us keep our keys separately and secure
them differently. An adversary would have to compromise three out of the five keys. If one or even
two of us go rogue, they can't steal the company’s coins because you need at least three keys to do
that. At the same time, if one of us loses our key or gets run over by a bus and our brain wallet is lost,
the others can still get the coins back and transfer them over to a new address and re-secure the keys.
In other words, multi-sig helps you to manage large amounts of cold-stored coins in a way that's
relatively secure and requires action by multiple people before anything drastic happens.

Sidebar. Threshold signatures are a cryptographic technique to take a single key, split it into shares,
store them separately, and sign transactions without reconstructing the key. Multi-signatures are a
feature of Bitcoin script by which you can specify that control of an address is split between
multiple independent keys. While there are some differences between them, they both increase
security by avoiding single points of failure.

In our presentation above, we motivated threshold signatures by explaining how it can help achieve
two-factor (or multi-factor) security, and multi-signatures by explaining how it can help a set of
individuals share control over jointly held funds. But either technology is applicable to either situation.

4.4 Online Wallets and Exchanges

So far we've talked about ways in which you can store and manage your bitcoins itself. Now we'll talk
about ways you can use other people’s services to help you do that. The first thing you could do is use
an online wallet.

Online wallets. An online wallet is kind of like a local wallet that you might manage yourself, except
the information is stored in the cloud, and you access it using a web interface on your computer or
using an app on your smartphone. Some online wallet services that are popular in early 2015 are
Coinbase and blockchain.info.

What’s crucial from the point of view of security is that the site delivers the code that runs on your
browser or the app, and it also stores your keys. At least it will have the ability to access your keys.
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Ideally, the site will encrypt those keys under a password that only you know, but of course you have
to trust them to do that. You have to trust their code to not leak your keys or your password.

An online wallet has certain trade offs to doing things yourself. A big advantage is that it's convenient.
You don't have to install anything on your computer in order to be able to use an online wallet in your
browser. On your phone you maybe just have to install an app once, and it won’t need to download
the block chain. It will work across multiple devices — you can have a single wallet that you access on
your desktop and on your phone and it will just work because the real wallet lives in the cloud.

On the other hand, there are security worries. If the site or the people who operate the site turn out
to be malicious or are compromised somehow, your bitcoins are in trouble. The site supplies the code
that has its grubby fingers on your bitcoins, and things can go wrong if there's a compromise or malice
at the service provider.

Ideally, the site or the service is run by security professionals who are better trained, or perhaps more
diligent than you in maintaining security. So you might hope that they do a better job and that your
coins are actually more secure than if you stored them yourself. But at the end of day, you have to
trust them and you have to rely on them not being compromised.

Bitcoin exchanges. To understand Bitcoin exchanges, let's first talk about how banks or bank like
services operate in the traditional economy. You give the bank some money — a deposit — and the
bank promises to give you back that money later. Of course, crucially, the bank doesn't actually just
take your money and put it in a box in the back room. All the bank does is promise that if you show up
for the money they'll give it back. The bank will typically take the money and put it somewhere else,
that is, invest it. The bank will probably keep some money around in reserve in order to make sure
that they can pay out the demand for withdrawals that they'll face on a typical day, or maybe even an
unusual day. Many banks typically use something called fractional reserve where they keep a certain
fraction of all the demand deposits on reserve just in case.

Now, Bitcoin exchanges are businesses that at least from the user interface standpoint function in a
similar way to banks. They accept deposits of bitcoins and will, just like a bank, promise to give them
back on demand later. You can also transfer fiat currency — traditional currency like dollars and euros
— into an exchange by doing a transfer from your bank account. The exchange promises to pay back
either or both types of currency on demand. The exchange lets you do various banking-like things. You
can make and receive Bitcoin payments. That is, you can direct the exchange to pay out some bitcoins
to a particular party, or you can ask someone else to deposit funds into the particular exchange on
your behalf — put into your account. They also let you exchange bitcoins for fiat currency or vice
versa. Typically they do this by finding some customer who wants to buy bitcoins with dollars and
some other customer who wants to sell bitcoins for dollars, and match them up. In other words, they
try to find customers willing to take opposite positions in a transaction. If there’s a mutually
acceptable price, they will consummate that transaction.
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Suppose my account at some exchange holds 5000 dollars and three bitcoins and | use the exchange, |
put in an order to buy 2 bitcoins for 580 dollars each, and the exchange finds someone who is willing
to take the other side of that transaction and the transaction happens. Now | have five bitcoins in my
account instead of three, and 3840 dollars instead of 5000.

The important thing to note here is that when this transaction happened involving me and another
customer of the same exchange, no transaction actually happened on the Bitcoin block chain. The
exchange doesn’t need to go to the block chain in order to transfer bitcoins or dollars from one
account to another. All that happens in this transaction is that the exchange is now making a different
promise to me than they were making before. Before they said, “we'll give you 5000 USD and 3 BTC”
and now they're saying “we'll give you 3840 USD and 5 BTC.” It's just a change in their promise — no
actual movement of money through the dollar economy or through the block chain. Of course, the
other person has had their promises to them change in the opposite way.

There are pros and cons to using exchanges. One of the big pros is that exchanges help to connect the
Bitcoin economy and the flows of bitcoins with the fiat currency economy so that it's easy to transfer
value back and forth. If | have dollars and bitcoins in my account | can trade back and forth between
them pretty easily, and that's really helpful.

The con is risk. You have the same kind of risk that you face with banks, and those risks fall into three
categories.

Three types of risks. The first risk is the risk of a bank run. A run is what happens when a bunch of
people show up all at once and want their money back. Since the bank maintains only fractional
reserves, it might be unable to cope with the simultaneous withdrawals. The danger is a kind of panic
behavior where once the rumor starts to get around that a bank or exchange might be in trouble and
they might be getting close to not honoring withdrawals, then people stampede in to try to withdraw
their money ahead of the crowd, and you get a kind of avalanche.

The second risk is that the owners of the banks might just be crooks running a Ponzi scheme. This is a
scheme where someone gets people to give them money in exchange for profits in the future, but
then actually takes their money and uses it to pay out the profits to people who bought previously.
Such a scheme is doomed to eventually fail and lose a lot of people a lot of money. Bernie Madoff
most famously pulled this off in recent memory.

The third risk is that of a hack, the risk that someone — perhaps even an employee of the exchange —
will manage to penetrate the security of the exchange. Since exchanges store key information that
controls large amounts of bitcoins, they need to be really careful about their software security and
their procedures — how they manage their cold and hot storage and all of that. If something goes
wrong, your money could get stolen from the exchange.

All of these things have happened. We have seen exchanges that failed due to the equivalent of a
bank run. We've seen exchanges fail due to the operators of the exchange being crooks, and we've
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seen exchanges that fail due to break-ins. In fact, the statistics are not encouraging. A study in 2013
found that 18 of 40 Bitcoin exchanges had ended up closing due to some failure or some inability to
pay out the money that the exchange had promised to pay out.

The most famous example of this of course is Mt. Gox. Mt. Gox was at one time the largest Bitcoin
exchange, and it eventually found itself insolvent, unable to pay out the money that it owed. Mt. Gox
was a Japanese company and it ended up declaring bankruptcy and leaving a lot of people wondering
where their money had gone. Right now the bankruptcy of Mt. Gox is tangled up in the Japanese and
American courts, and it's going to be a while before we know exactly where the money went. The one
thing we know is that there's a lot of it and Mt. Gox doesn't have it anymore. So this is a cautionary
tale about the use of exchanges.

Connecting this back to banks, we don't see a 45% failure rate for banks in most developed countries,
and that’s partly due to regulation. Governments regulate traditional banks in various ways.

Bank regulation. The first thing that governments do is they often impose a minimum reserve
requirement. In the U.S., the fraction of demand deposits that banks are required to have in liquid
form is typically 3-10%, so that they can deal with a surge of withdrawals if that happens. Second,
governments often regulate the types of investments and money management methods that banks
can use. The goal is to ensure that the banks’ assets are invested in places that are relatively low risk,
because those are really the assets of the depositors in some sense.

Now, in exchange for these forms of regulation governments typically do things to help banks or help
their depositors. First, governments will issue deposit insurance. That is, the government promises
depositors that if a bank that follows these rules goes under, the government will make good on at
least part of those deposits. Governments also sometimes act as a “lender of last resort.” If a bank
gets itself into a tough spot, but it's basically solvent, the government may step in and loan the bank
money to tide it over until it can move money around as necessary to get itself out of the woods.

So, traditional banks are regulated in this way. Bitcoin exchanges are not. The question of whether or
how Bitcoin exchanges or other Bitcoin business should be regulated is a topic that we will come back
to in chapter 7.

Proof of reserve. A Bitcoin exchange or someone else who holds bitcoins can use a cryptographic trick
called a proof of reserve to give customers some comfort about the money that they deposited. The
goal is for the exchange or business holding bitcoins to prove that it has a fractional reserve — that
they retain control of perhaps 25% or maybe even 100% of the deposits that people have made.

We can break the proof-of-reserve problem into two pieces. The first is to prove how much reserve
you’re holding — that's the relatively easy part. The company simply publishes a valid payment-to-self
transaction of the claimed reserve amount. That is, if they claim to have 100,000 bitcoins, they create
a transaction in which they pay 100,000 bitcoins to themselves and show that that transaction is valid.
Then they sign a challenge string — a random string of bits generated by some impartial party — with
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the same private key that was used to sign the payment-to-self transaction. This proves that someone
who knew that private key participated in the proof of reserve.

We should note two caveats. Strictly speaking, that's not a proof that the party that's claiming to own
the reserve owns it, but only that whoever does own those 100,000 bitcoins is willing to cooperate in
this process. Nonetheless, this looks like a proof that somebody controls or knows someone who
controls the given amount of money. Also, note that you could always under-claim: the organization
might have 150,000 bitcoins but choose to make a payment-to-self of only 100,000. So this proof of
reserve doesn't prove that this is all you have, but it proves that you have at least that much.

Proof of liabilities. The second piece is to prove how many demand deposits you hold, which is the
hard part. If you can prove your reserves and your demand deposits then anyone can simply divide
those two numbers and that's what your fractional reserve is. We'll present a scheme that allows you
to over-claim but not under-claim your demand deposits. So if you can prove that your reserves are at
least a certain amount and your liabilities are at most a certain amount, taken together, you’ve
proved a lower bound on your fractional reserve.

If you didn’t care at all about the privacy of your users, you could simply publish your records —
specifically, the username and amount of every customer with a demand deposit. Now anyone can
calculate your total liabilities, and if you omitted any customer or lied about the value of their deposit,
you run the risk that that customer will expose you. You could make up fake users, but you can only
increase the value of your claimed total liabilities this way. So as long as there aren’t customer
complaints, this lets you prove a lower bound on your deposits. The trick, of course, is to do all this
while respecting the privacy of your users.

To do this we’ll use Merkle trees, which we saw in chapter 1. Recall that a merkle tree is a binary tree
that's built with hash pointers so that each of the pointers not only says where we can get a piece of
information, but also what the cryptographic hash of that information is. The exchange executes the
proof by constructing a Merkle tree in which each leaf corresponds to a user, and publishing its root
hash. Similar to the naive protocol above, it’'s each user’s responsibility to ensure that they are
included in the tree. In addition, there’s a way for users to collectively check the claimed total of
deposits. Let’s delve into detail now.

116



user1 user2 user3 user4 users useré user7 users
acct acct acct acct acct acct acct acct

Figure 4.5: Proof of liabilities. The exchange publishes the root of a Merkle tree that contains all users
at the leaves, including deposit amounts. Any user can request a proof of inclusion in the tree, and
verify that the deposit sums are propagated correctly to the root of the tree.

Now, we're going to add to each one of these hash pointers another field, or attribute. This attribute
is a number that represents the total monetary value in bitcoins of all deposits that are in the sub-tree
underneath that hash pointer in the tree. For this to be true, the value corresponding to each hash
pointer should be the sum of the values of the two hash pointers beneath it.

The exchange constructs this tree, cryptographically signs the root pointer along with the root
attribute value, and publishes it. The root value is of course the total liabilities, the number we’re
interested in. The exchange is making the claim that all users are represented in the leaves of the tree,
their deposit values are represented correctly, and that the values are propagated correctly up the
tree so that the root value is the sum of all users’ deposit amounts.

Now each customer can go to the organization and ask for a proof of correct inclusion. The exchange
must then show the customer the partial tree from that user’s leaf up to the root, as shown in Figure
4.6. The customer then verifies that:
1. The root hash pointer and root value are the same as what the exchange signed and
published.
2. The hash pointers are consistent all the way down, that is, each hash value is indeed the
cryptographic hash of the node it points to.
3. The leaf contains the correct user account info (say, username/user ID, and deposit amount).
4. Each value is the sum of the values of the two values beneath it.
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5. Neither of the values is a negative number.
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Figure 4.6: Proof of inclusion in a Merkle tree. The leaf node is revealed, as well as the siblings of the
nodes on the path from the leaf to the root.

The good news is that if every customer does this, then every branch of this tree will get explored,
and someone will verify that for every hash pointer, its associated value equals the sum of the values
of its two children. Crucially, the exchange cannot present different values in any part of the tree to
different customers. That’s because doing so would either imply the ability find a hash collision, or
presenting different root values to different customers, which we assume is impossible.

Let’s recap. First the exchange proves that they have at least X amount of reserve currency by doing a
self transaction of X amount. Then they prove that their customers have at most an amount Y
deposited. This shows that their reserve fraction is at least X/Y. What that means is that if a Bitcoin
exchange wants to prove that they hold 25% reserves on all deposits — or 100% — they can do that in
a way that's independently verifiable by anybody, and no central regulator is required.

You might notice that the two proofs presented here (the proof of reserves by signing a challenge
string and the proof of liabilities via a Merkle tree) reveal a lot of private information. Specifically,
they reveal all of the addresses being used by the exchange, the total value of the reserves and
liabilities, and even some information about the individual customers balances. Real exchanges are
hesitant to publish this, and as a result cryptographic proofs of reserve have been rare.

A recently proposed protocol called Provisions enables the same proof-of-solvency, but without
revealing the total liabilities or reserves or the addresses in use. This protocol uses more advanced
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crypto and we won’t cover it here, but it’s another example showing how cryptography can be used to
ensure privacy.

Solvency is one aspect of regulation that Bitcoin exchanges can prove voluntarily, but other aspects of
regulation are harder to guarantee, as we'll see in Chapter 7.

4.5 Payment Services

So far we've talked about how you can store and manage your bitcoins. Now let’s consider how a
merchant — whether an online merchant or a local retail merchant — can accept payments in
bitcoins in a practical way. Merchants generally support Bitcoin payments because their customers
want to be able to pay with bitcoins. The merchant may not want to hold on to bitcoins, but simply
receive dollars or whatever is the local fiat currency at the end of the day. They want an easy way to
do this without worrying too much about technology, changing their website or building some type of
point of sale technology.

The merchant also wants low risk. There are various possible risks: using new technology may cause
their website to go down, costing them money. There’s the security risk of handling bitcoins —
someone might break into their hot wallet or some employee will make off with their bitcoins. Finally
there’s the exchange rate risk: the value of bitcoins in dollars might fluctuate from time to time. The
merchant who might want to sell a pizza for twelve dollars wants to know that they're going to get
twelve dollars or something close to it, and that the value of the bitcoins that they receive in
exchange for that pizza won't drop drastically before they can exchange those bitcoins for dollars.

Payment services exist to allow both the customer and the merchant to get what they want, bridging
the gap between these different desires.
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Choose A Way To Accept Bitcoin or see examples of ea

Type ® Button Hosted Page iFrams Email invoice
Payment ® Buy now Donation Subseription
Button Style . Pay with Bitcoin f_\ Pay with Bitcoin ()

Item Name Alpaca Socks Amount | BTG # | 0.00

Item Description

Send Funds To My Wallet (0.00 BTC) 5

Show Advanced Options

Generate Button Code

Figure 4.7: Example payment service interface for generating a pay-with-Bitcoin button. A merchant
can use this interface to generate a HTML snippet to embed on their website.

The process of receiving Bitcoin payments through a payment service might look like this to the
merchant:

1. The merchant goes to payment service website and fills out a form describing the item, price,
and presentation of the payment widget, and so on. Figure 4.7 shows an illustrative example
of a form from Coinbase.

2. The payment service generates HTML code that the merchant can drop into their website.

3. When the customer clicks the payment button, various things happen in the background and
eventually the merchant gets a confirmation saying, “a payment was made by customer ID
[customer-id] for item [item-id] in amount [value].”

While this manual process makes sense for a small site selling one or two items, or a site wishing to
receive donations, copy-pasting HTML code for thousands of items is of course infeasible. So payment
services also provide programmatic interfaces for adding a payment button to dynamically generated
web pages.
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Figure 4.8: Payment process involving a user, merchant, and payment service.

Now let’s look at the payment process in more detail to see what happens when the customer makes
a purchase with Bitcoin. The steps below are illustrated in Figure 4.8.

1. The user picks out an item to buy on the merchant website, and when it comes time to pay,
the merchant will deliver a webpage which will contain the Pay with Bitcoin button, which is
the HTML snippet provided by the payment service. The page will also contain a transaction ID
— which is an identifier that’s meaningful to the merchant and allows them to locate a record
in their own accounting system — along with an amount the merchant wants to be paid.

2. If the user wants to pay with bitcoins, they will click that button. That will trigger an HTTPS
request to the payment service saying that the button was clicked, and passing on the identity
of the merchant, the merchant’s transaction ID, and the amount.

3. Now the payment service knows that this customer — whoever they are — wants to pay a
certain amount of bitcoins, and so the payment service will pop up some kind of a box, or
initiate some kind of an interaction with the user. This gives the user information about how
to pay, and the user will then initiate a bitcoin transfer to the payment service through their
preferred wallet.

4. Once the user has created the payment, the payment service will redirect the browser to the
merchant, passing on the message from the payment service that it looks okay so far. This
might mean, for example, that the payment service has observed the transaction broadcast to
the peer-to-peer network, but the transaction hasn’t received enough (or any) confirmations
so far. This completes the payment as far as the user is concerned, with the merchant’s
shipment of goods pending a final confirmation from the payment service.

121



5. The payment service later directly sends a confirmation to the merchant containing the
transaction ID and amount. By doing this the payment service tells the merchant that the
service owes the merchant money at the end of the day. The merchant then ships the goods
to the user.

The final step is the one where the payment service actually sends money to the merchant, in dollars
or some fiat currency, via a deposit to the merchant’s bank account. This happens at the end of fixed
settlement periods, perhaps once a day, rather than once for each purchase. The payment service
keeps a small percentage as a fee; that’s how they make their revenue. Some of these details might
vary depending on the payment service, but this is the general scheme of things.

To recap, at the end of this process the customer pays bitcoins and the merchant gets dollars, minus a
small percentage, and everyone is happy. Recall that the merchant wants to sell items for a particular
number of dollars or whatever is the local fiat currency. The payment service handles everything else

— receiving bitcoins from customers and making deposits at the end of the day.

Crucially, the payment service absorbs all of the risk. It absorbs the security risk, so it needs to have
good security procedures to manage its bitcoins. It absorbs the exchange rate risk because it's
receiving bitcoins and paying out dollars. If the price of dollars against bitcoins fluctuates wildly, the
payment service might lose money. But then if it fluctuates wildly in the other direction the service
might earn money, but it’s a risk. Absorbing it is part of the payment service’s business.

Note that the payment service probably operates at a large scale, so it receives large numbers of
bitcoins and pays out large numbers of dollars. it will have a constant need to exchange the bitcoins
it's receiving for more dollars so that it can keep the cycle going. Therefore a payment service has to
be an active participant in the exchange markets that link together fiat currencies and the Bitcoin
economy. So the service needs to worry about not just what the exchange rate is, but also how to
exchange currency in large volumes.

That said, if it can solve these problems the fee that the service receives on every transaction makes it
a potentially lucrative business because it solves the mismatch between customers’ desire to pay
bitcoins and merchants’ desire to just get dollars and concentrate on selling goods.

4.6 Transaction Fees

The topic of transaction fees has come up in previous chapters and it will come up again in later
chapters. Here we’ll discuss the practical details of how transaction fees are set in Bitcoin today.

Whenever a transaction is put into the Bitcoin block chain, that transaction might include a
transaction fee. Recall from a previous chapter that a transaction fee is just defined to be the
difference between the total value of coins that go into a transaction minus the total value of coins
that come out. The inputs always have to be at least as big as the outputs because a regular

122



transaction can't create coins, but if the inputs are bigger than the outputs then the difference is
deemed to be a transaction fee, and that fee goes to the miner who makes the block that includes this
transaction.

The economics of transaction fees are interesting and complex, but we’ll limit ourselves to how
transaction fees are actually set in Bitcoin as it operates as of early 2015. These details do change
from time to time, but we'll give you a snapshot of the current state.

Why do transaction fees exist at all? The reason is that there is some cost that someone has to incur
in order to relay your transaction. The Bitcoin nodes need to relay your transaction and ultimately a
miner needs to build your transaction into a block, and it costs them a little bit to do that. For
example, if a miner’s block is slightly larger because it contains your transaction, it will take slightly
longer to propagate to the rest of the network and there’s a slightly higher chance that the block will
be orphaned if another block was found near-simultaneously by another miner.

So, there is a cost — both to the peer to peer network and to the miners — of incorporating your
transaction. The idea of a transaction fee is to compensate miners for those costs they incur to
process your transaction. Nodes don’t receive monetary compensation in the current system,
although running a node is of course far less expensive than being a miner. Generally you're free to
set the transaction fee to whatever you want it to be. You can pay no fee, or if you like you can set the
fee quite high. As a general matter, if you pay a higher transaction fee it's natural that your
transaction will be relayed and recorded more quickly and more reliably.

Current default transaction fees. The current transaction fees that most miners expect are as follows:
first of all, no fee is charged if a transaction meets all of these three conditions:

1. the transaction is less than 1000 bytes in size,

2. all outputs are 0.01 BTC or larger

3. priority is large enough
Priority is defined as: (sum of input age * input value) / (transaction size). In other words, look at all
of the inputs to the transaction, and for each one compute the product of that input’s age and its
value in bitcoins, and add up all those products. Note that the longer a transaction output sits
unspent, the more it ages, and the more it will contribute to priority when it is finally spent.

If you meet these three requirements then your transaction will be relayed and it will be recorded in
the block chain without a fee. Otherwise a fee is charged and that fee is about .0001 BTC per 1000
bytes, and as of 2015 that's a fraction of a U.S. penny per 1000 bytes. The approximate size of a
transaction is 148 bytes for each input plus, 34 bytes for each output and ten bytes for other
information. So a transaction with two inputs and two outputs would be about 400 bytes.

The current status quo is that most miners enforce the above fee structure, which means that they
will either not service or will service last transactions that don't provide the necessary transaction
fees. But there are other miners who don't enforce these rules, and who will record and operate on a
transaction even if it pays a smaller fee or no fee at all.
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If you make a transaction that doesn't meet the fee requirements it will probably find its way into the
block chain anyway, but the way to get your transaction recorded more quickly and more reliably is to
pay the standard fee, and that's why most wallet software and most payment services include the
standard fee structure in the payments that go on, and so you'll see a little bit of money raked off for
transaction fees when you engage in everyday Bitcoin business.

4.7 Currency Exchange Markets

By currency exchange we mean trading bitcoins against fiat currency like dollars and euros. We've
talked earlier about services that let you do this, but now we want to look at this as a market — its
size, extent, how it operates, and a little bit about the economics of this market.

The first thing to understand is that it operates in many ways like the market between two fiat
currencies such as dollars and euros. The price will fluctuate back and forth depending on how badly
people want to buy euros versus how badly people want to buy dollars on a particular day. In the
Bitcoin world there are sites like bitcoincharts.com that show the exchange rate with various fiat
currencies on a number of different exchanges.

As you'll see if you explore the site, there’s a lot of trading going on, and the prices move in real time
as trades are made. It’s a liquid market and there are plenty of places that you can go to to buy or sell
bitcoins. In March 2015 the volume on Bitfinex, the largest Bitcoin — USD exchange, was about
70,000 bitcoins or about 21 million dollars over a 24 hour period.

Another option is to meet people to trade bitcoins in real life. There are sites that help you do this. On
localbitcoins.com, for example, you can specify your location and that you wish to buy bitcoins with
cash. You’ll get a bunch of results of people who at the time of your search are willing to sell bitcoins
at that location, and in each case it tells you what price and how many bitcoins they’re offering. You
can then contact any of them and arrange to meet at a coffee shop or in a park or wherever, give
them dollars and receive bitcoins in exchange. For small transactions, it may be sufficient to wait for
one or two confirmations on the block chain.

Finally, in some places there are regular meet-ups where people go to trade bitcoins, and so you can
go to a certain park or street corner or cafe at a scheduled day and time and there will be a bunch of
people wanting to buy or sell bitcoins and you can do business with them. One reason someone might
prefer obtaining bitcoins in person over doing so online is that it's anonymous, to the extent that a
transaction in a public place can be considered anonymous. On the other hand, opening an account
with an exchange generally requires providing government-issued ID due to banking regulation. We’'ll
discuss this in more detail in Chapter 7.

Supply and demand. Like any market, the Bitcoin exchange market matches buyers who want to do
one thing with sellers that are willing to do the opposite thing. It's a relatively large market — millions
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of U.S. dollars per day pass through it. It's not at the scale of the New York Stock Exchange or the
dollar—euro market, which are vastly larger, but it’s large enough that there is a notion of a consensus
price. A person who wants to come into this market can buy or sell at least a modest amount and will
always be able to find a counterparty.

The price of this market, this consensus price, like the price of anything in a liquid market will be set
by supply and demand. By that we mean the supply of bitcoins that might potentially be sold and the
demand for bitcoins by people who have dollars. The price through this market mechanism will be set
to the level that matches supply and demand. Let’s dig into this in a little more detail.

What is the supply of bitcoins? This is the number of bitcoins that you might possibly buy in one of
these markets, and it is equal to the supply of bitcoins that are in circulation currently. There's a fixed
number of bitcoins in circulation. As of October 2015 it's about 13.9 million, and the rules of Bitcoin as
they currently stand say that this number will slowly go up and eventually hit a limit of 21 million.

You might also include demand deposits of bitcoins. That is, if someone has put money into their
account in a Bitcoin exchange, and the exchange doesn't maintain a full reserve to meet every single
deposit, then there will be demand deposits at that exchange that are larger than the number of coins
that the exchange is holding.

Depending on what question you're asking about the market it might or might not be correct to
include demand deposits in the supply. Basically, you should include demand deposits in a market
analysis when demand-deposited money can be sold in that market. For example, if you've traded
dollars for a demand deposit of bitcoins, and the exchange allows demand-deposited bitcoins to be
redeemed for dollars, then they count.

It's worth noting, as well, that when economists conventionally talk about the supply of fiat currency
they typically include in the money supply not only the currency that's in circulation — that is, paper
and metal money — but also the total amount of demand deposits, and that's for the logical reason
that people can actually spend their demand-deposited money to buy stuff. So although it's tempting
to say that the supply of bitcoins is fixed at 13.9 million currently or 21 million eventually, for some
purposes we have to include demand deposits where those demand deposits function like money,
and so the supply might not be fixed the way some Bitcoin advocates might claim. We need to look at
the circumstances of the particular market we're talking about in order to understand what the
proper money supply is. But let's assume we've agreed on what supply we're using based on what
market we're analyzing.

Let's now look at demand. There are really two main sources of demand for bitcoins. There's a
demand for bitcoins as a way of mediating fiat currency transactions and there's demand for bitcoins
as an investment.

First let's look at mediating fiat currency transactions. Imagine that Alice wants to buy something from
Bob and wants to pay some money to Bob, and Alice and Bob want to transfer let's say a certain
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amount of dollars, but they find it convenient to use Bitcoin to do this transfer. Let’s assume here that
neither Alice nor Bob is interested in holding bitcoins long-term. We'll return to that possibility in a
moment. So Alice would buy bitcoins for dollars and transfer them, and once they receive enough
confirmations to Bob's satisfaction, he’ll sell those bitcoins for dollars. The key thing here from the
point of view of demand for bitcoins is that the bitcoins mediating this transaction have to be taken
out of circulation during the time that the transaction is going on. This creates a demand for bitcoins.

The second source of demand is that Bitcoin is sometimes demanded as an investment. That is if
somebody wants to buy bitcoins and hold them in the hope that the price of bitcoins will go up in the
future and that they'll be able to sell them. When people buy and hold, those bitcoins are out of
circulation. When the price of Bitcoin is low, you might expect a lot of people to want to buy bitcoins
as an investment, but if the price goes up very high then the demand for bitcoins as an investment
won't be as high.

A simple model of market behavior. Now, we can do some simple economic modeling to understand
how these markets will behave. We won’t do a full model here although that's an interesting exercise.
Let’s look specifically at the the transaction-mediation demand and what effect that might have on
the price of bitcoins.

We'll start by assuming some parameters. T is the total transaction value mediated via Bitcoin by
everyone participating in the market. This value is measured in dollars per second. That’s because we
assume for simplicity that the people who want to mediate these transactions have in mind a certain
dollar value of the transactions, or some other fiat currency that we'll translate into dollars. So there's
a certain amount of dollars per second of transactions that need to be mediated. D is the duration of
time that bitcoins need to be held out of circulation in order to mediate a transaction. That's the time
from when the payer buys the bitcoins to when the receiver is able to sell them back into the market,
and we'll measure that in seconds. S is the total supply of bitcoins that are available for this purchase,
and so that's going to be all of the hard-currency bitcoins that exist — currently about 14 million or
eventually up to 21 million — minus those that are held out by people as long term investments. In
other words, we’re talking about the bitcoins sloshing around and available for the purpose of
mediating transactions. Finally, P is the price of Bitcoin, measured in dollars per bitcoin.

Now we can do some calculations. First we'll calculate how many bitcoins become available in order
to service transactions every second. There are S bitcoins available in total and because they're taken
out of circulation for a time of D seconds, every second on average an S/D fraction of those bitcoins
will become newly available because they'll emerge from the out-of-circulation state and become
available for mediating transactions every second. That's the supply side.

On the demand side — the number of bitcoins per second that are needed to mediate transactions —
we have T dollars worth of transactions to mediate and in order to mediate one dollar worth of
transactions we need 1/P bitcoins. So T/P is the number of bitcoins per second that are needed in
order to serve all of the transactions that people want to serve.
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Now if you look at a particular second of time, for that second there's a supply of S/D and a demand
of T/P. In this market, like most markets, the price will fluctuate in order to bring supply into line with
demand. If the supply is higher than the demand then there are bitcoins going unsold, so people
selling bitcoins will be willing to lower their asking price in order to sell them. And according to our
formula T/P for demand, when the price drops the demand increases, and supply and demand will
reach equilibrium.

On the other hand, if supply is smaller than demand it means that there are people who want to get
bitcoins in order to mediate a transaction but can't get them because there aren't enough bitcoins
around. Those people will then have to bid more in order to get their bitcoins because there will be a
lot of competition for a limited supply of bitcoins. This drives the price up, and referring to our
formula again, it means that demand will come down until there is equilibrium. In equilibrium, the
supply must equal the demand, so we have

which gives us a formula for the price:

What does this equation tell us? We can simplify it a bit further: we can assume that D, the duration
for which you need to hold a bitcoin to mediate a transaction, doesn’t change. The total supply S also
doesn’t change, or at least changes slowly over time. That means the price is proportional to the
demand for mediation as measured in dollars. So if the demand for mediation in dollars doubles then
the price of bitcoins should double. We could in fact graph the price against some estimate of the
demand for transaction mediation and see whether or not they match up. When economists do this,
the two do tend to match up pretty well.

Notice that the total supply S includes only the bitcoins that aren't being held as investments. So if
more people are buying bitcoins as an investment, S will go down, and our formula tells us that P will
go up. This makes sense — if there's more demand on the investment side then the price that you
need to pay to mediate a transaction will go up.

Now this is not a full model of the market. To have a full model we need to take into account the
activity of investors. That is, investors will demand bitcoins when they believe the price will be higher
in the future, and so we need to think about investors’ expectations. These expectations, of course,
have something to do with the expected demand in the future. We could build a model that is more
complex and takes that into account, but we won’t do that here.

The bottom line here is that there is a market between bitcoins and dollars, and between bitcoins and
other fiat currencies. That market has enough liquidity that you can buy or sell in modest quantities in
a reliable way, although the price does go up and down. Finally, it's possible to do economic modeling
and have some idea about how supply and demand interact in this market and predict what the

market might do, as long as you have a way to estimate unknowable things like how much are people
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going to want to use Bitcoin to mediate transactions in the future. That kind of economic modeling is
important to do and very informative, and surely there are people who are doing it in some detail
today, but a detailed economic model of this market is beyond the scope of this text.

Further reading

Securing bitcoins has some similarities, as well as important differences, to the way banks secure
money. Chapter 10 of Ross Anderson’s security textbook, titled “Banking and bookkeeping”, is a great
read. The entire book is freely available online.

Anderson, Ross. Security engineering. John Wiley & Sons, 2008.

The study analyzing closures of Bitcoin exchanges that we referenced:

Moore, Tyler, and Nicolas Christin. Beware the middleman: Empirical analysis of bitcoin-exchange
risk. Financial Cryptography and Data Security 2013.

Adi Shamir’s paper on secret sharing:
Shamir, Adi. How to share a secret. Communications of the ACM 22.11 (1979).

Paper describing Provisions, a protocol for privacy-preserving solvency proofs:

Dagher, Gaby and Benedikt Biinz and Joseph Bonneau and Jeremy Clark and Dan Boneh. Provisions:

Privacy-preserving proofs of solvency for Bitcoin exchanges. In ACM CCS, 2015.

It’s difficult for users to pick memorable yet hard-to-guess passwords because modern
password-cracking techniques are quite clever and effective. This paper presents one such technique:

Weir, Matt, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. Password cracking using
probabilistic context-free grammars. In Security and Privacy, 2009.

A survey of transaction fees in practice through 2014:

Moser, Malte and Bohme, Rainer. Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction
Fees. 2nd Workshop on Bitcoin Research, 2015.

Exercises

1. Proof of reserve. TransparentExchange claims that it controls at least 500,000 BTC and wants
to prove this to its customers. To do this it publishes a list of addresses that have a total
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balance of 500,000 BTC. It then signs the statement “TransparentExchange controls at least

500,000 BTC” with each of the corresponding private keys, and presents these signatures as

proof.

What are some ways in which TransparentExchange might be able to produce such a proof

even if it doesn’t actually currently control 500,000 BTC? How would you modify the proof to

make it harder for the exchange to cheat?

Proof of liabilities.

TransparentExchange implements a Merkle Tree based protocol to prove an upper bound on

its total deposits. (Combined with a proof of reserve, this proves that the exchange is solvent.)

Every customer is assigned a leaf node containing an ID which is the hash of her username and

a value which is her BTC balance. The protocol specifies that TransparentExchange should

propagate IDs and values up the tree by the following recursive definition — for any internal

node:
node.value = node.left_child.value + node.right_child.value
node.id = Hash(node.left_child.id || node.right_child.id || node.value)

The exchange publishes the root ID and value, and promises to prove to any customer that

her node is included in the tree (by the standard Merkle tree proof of inclusion). The idea is

that if the exchange tries to claim a lower total than the actual sum of deposits by leaving
some customers out of the tree or by making their node value less than their balance, it will
get caught when any of those customers demand a proof of inclusion.

2.1. Why can’t the exchange include fake customers with negative values to lower the
total?

2.2, Show an attack on this scheme that would allow the exchange to claim a total less
than the actual sum of deposits.

2.3. Fix this scheme so that it is not vulnerable to the attack you identified.

2.4. Ideally, the proof that the exchange provides to a customer shouldn’t leak information
about other customers. Does this scheme have this property? If not, how can you fix
it?

Transaction fees.

3.1. Alice has a large number of coins each of small value v, which she would like to
combine into one coin. She constructs a transaction to do this, but finds that the
transaction fee she’d have to spend equals the sum of her coin values. Based on this
information (and the default transaction fee policy specified in slide 50), estimate v.

3.2.  Can Alice somehow consolidate her coins without incurring any transaction fee under
the default policy?

3.3. Compared to a fee structure that doesn’t factor the age of the inputs into the
transaction fee, what effect might the current default fee structure have on the
behavior of users and services?

Multi-signature wallet

4.1. BitCorp has just noticed that Mallory has compromised one of their servers holding
their Bitcoin private keys. Luckily, they are using a 2-of-3 multi-signature wallet, so
Mallory has learnt only one of the three sets of keys. The other two sets of keys are on
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different servers that Mallory cannot access. How do they re-secure their wallet and
effectively revoke the information that Mallory has learned?

4.2. If BitCorp uses a 2-out-of-2 instead of a 2-out-3 wallet, what steps can they take in
advance so that they can recover even in the event of one of their servers getting
broken into (and Mallory not just learning but also potentially deleting the key
material on that server)?

Exchange rate

5.1.  Speculate about why buying bitcoins in person is generally more expensive than
buying from an online exchange.

5.2. Moore and Christin observe that security breaches and other failures of exchanges
have little impact on the Bitcoin exchange rate. Speculate on why this might be.

Payments. A Bitcoin payment service might receive thousands of payments from various users

near-simultaneously. How can it tell whether a particular user Alice who logged into the

payment service website and initiated the payment protocol actually made a payment or not?

BitcoinLotto: Suppose the nation of Bitcoinia has decided to convert its national lottery to use

Bitcoin. A trusted scratch-off ticket printing factory exists and will not keep records of any

values printed. Bitcoinia proposes a simple design: a weekly run of tickets is printed with an

address holding the jackpot on each ticket. This allows everybody to verify the jackpot exists.

The winning ticket contains the correct private key under the scratch material.

7.1.  What might happen if the winner finds the ticket on Monday and immediately claims
the jackpot? Can you modify your design to ensure this won’t be an issue?

7.2.  Some tickets inevitably get lost or destroyed. So you’d like to modify the design to roll
forward any unclaimed jackpot from Week n to the winner in Week n+1. Can you
propose a design that works, without letting the lottery administrators embezzle
funds? Also make sure that the Week n winner can’t simply wait until the beginning of
Week n+1 to attempt to double their winnings.
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Chapter 5: Bitcoin Mining

This chapter is all about mining. We’ve already seen quite a bit about miners and how Bitcoin relies on
them — they validate every transaction, they build and store all the blocks, and they reach a
consensus on which blocks to include in the block chain. We also have already seen that miners earn
some reward for doing this, but we still have left many questions unanswered. Who are the miners?
How did they get into this? How do they operate? What's the business model like for miners? What
impact do they have on the environment? In this chapter, we will answer all of these questions.

5.1 The task of Bitcoin miners

Do you want to get into Bitcoin mining? If you do, we’re not going to completely discourage you, but
beware that Bitcoin mining bears many similarities to gold rushes. Historical gold rushes are full of
stories of young people rushing off to find fortune and inevitably many of them lose everything they
have. A few strike it rich, but even those that do generally endure lots of hardship along the way.
WEe’'ll see in this section why Bitcoin mining shares many of the same challenges and risks as
traditional gold rushes and other get-rich-quick schemes.

But first, let’s look at the technical details. To be a Bitcoin miner, you have to join the Bitcoin network
and connect to other nodes. Once you’re connected, there are six tasks to perform:

1. Listen for transactions. First, you listen for transactions on the network and validate them by
checking that signatures are correct and that the outputs being spent haven’t been spent
before.

2. Maintain block chain and listen for new blocks. You must maintain the block chain. You start
by asking other nodes to give you all of the historical blocks that are already part of the block
chain before you joined the network. You then listen for new blocks that are being broadcast
to the network. You must validate each block that you receive — by validating each
transaction in the block and checking that the block contains a valid nonce. We'll return to the
details of nonce checking later in this section.

3. Assemble a candidate block. Once you have an up-to-date copy of the block chain, you can
begin building your own blocks. To do this, you group transactions that you heard about into a
new block that extends the latest block you know about. You must make sure that each
transaction included in your block is valid.

4. Find a nonce that makes your block valid. This step requires the most work and it’s where all
the real difficulty happens for miners. We will see this in detail shortly.

5. Hope your block is accepted. Even if you find a block, there’s no guarantee that your block will
become part of the consensus chain. There’s bit of luck here; you have to hope that other
miners accept your block and start mining on top of it, instead of some competitor’s block.

6. Profit. If all other miners do accept your block, then you profit! At the time of this writing in
early 2015, the block reward is 25 bitcoins which is currently worth over $6,000. In addition, if
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any of the transactions in the block contained transaction fees, the miner collects those too.
So far transaction fees have been a modest source of additional income, only about 1% of
block rewards.

We can classify the steps that a miner must take into two categories. Some tasks — validating
transactions and blocks — help the Bitcoin network and are fundamental to its existence. These tasks
are the reason that the Bitcoin protocol requires miners in the first place. Other tasks — the race to
find blocks and profit —- aren’t necessary for the Bitcoin network itself but are intended to incentivize
miners to perform the essential steps. Of course, both of these are necessary for Bitcoin to function as
a currency, since miners need an incentive to perform the critical steps.

Finding a valid block. Let’s return to the question of finding a nonce that makes your block valid. In
Chapter 3 we saw that there are two main hash-based structures. There's the block chain where each
block header points to the previous block header in the chain, and then within each block there's a
Merkle tree of all of the transactions included in that block.

The first thing that you do as a miner is to compile a set of valid transactions that you have from your
pending transaction pool into a Merkle tree. Of course, you may choose how many transactions to
include up to the limit on the total size of the block. You then create a block with a header that points
to the previous block. In the block header, there’s a 32 bit nonce field, and you keep trying different
nonces looking for one that causes the block’s hash to be under the target — roughly, to begin with
the required number of zeros. A miner may begin with a nonce of 0 and successively increment it by
one in search of a nonce that makes the block valid. See Figure 5.1.

| 1

prev: H(') prev: H(')

, mrkl_root: H( ) < mrkl_root: H(
nonce: Ox7a83 nonce: 0x0000. ..

hash:  0x0000 hash:  0x3485

y
H() H()
 — —
HO ) H() H( ) H(Q

- |

25.0—A ‘ transaction ‘ ‘ transaction | ‘ transaction |
coinbase:
0x0000...00

Figure 5.1: Finding a valid block. In this example, the miner tries a nonce of all Os. It does not produce
a valid hash output, so the miner would then proceed to try a different nonce.
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In most cases you'll try every single possible 32-bit value for the nonce and none of them will produce
a valid hash. At this point you're going to have to make further changes. Notice in Figure 5.1 that
there’s an additional nonce in the coinbase transaction that you can change as well. After you've
exhausted all possible nonces for the block header, you'll change the extra nonce in the coinbase
transaction — say by incrementing it by one — and then you'll start searching nonces in the block
header once again.

When you change the nonce parameter in the coinbase transaction, the entire Merkle tree of
transactions has to change (See Figure 5.2). Since the change of the coinbase nonce will propagate all
the way up the tree, changing the extra nonce in the coinbase transaction is much more expensive
operation than changing the nonce in the block header. For this reason, miners spend most of their
time changing the nonce in the block header and only change the coinbase nonce when they have
exhausted all of the 23? possible nonces in the block header without finding a valid block.

prev: H(') prev: H() -
mrkl_root: H( ) < mrkl_root: g H% ‘! )
nonce: 0x7a83 nonce: 000. ..

hash: 0x0000 :

All changed—— el

My,
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T (e wp ) G

L~

Y Y
25.0—A transaction | | transaction | | transaction |
coinbase:
x0000...01_~

Figure 5.2: Changing a nonce in the coinbase transaction propagates all the way up the Merkle tree.

The vast, vast majority of nonces that you try aren't going to work, but if you stay at it long enough
you'll eventually find the right combination of the extra nonce in the coinbase transaction and the
nonce in the block header that produce a block with a hash under the target. When you find this, you
want to announce it as quickly as you can and hope that you can profit from it.
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Is everyone solving the same puzzle? You may be wondering: if every miner just increments the
nonces as we described, aren’t all miners solving the exact same puzzle? Won’t the fastest miner
always win? The answer is no! Firstly, it’s unlikely that miners will be working on the exact same
block as each miner will likely include a somewhat different set of transactions and in a different
order. But more importantly, even if two different miners were working on a block with identical
transactions, the blocks would still differ. Recall that in the coinbase transaction, miners specify
their own address as the owner of the newly minted coins. This address by itself will cause changes
which propagate up to the root of the Merkle tree, ensuring that no two miners are working on
exactly the same puzzle unless they share a public key. This would only happen if the two miners
are part of the same mining pool (which we’ll discuss shortly), in which case they’ll communicate to
ensure they include a distinct nonce in the coinbase transaction to avoid duplicating work.

Difficulty. Exactly how difficult is it to find a valid block? As of March 2015, the mining difficulty target
(in hexadecimal) is:

0000000000000000172ECO000000000000000000000000000000000000000000

so the hash of any valid block has to be below this value. In other words only one in about 2% nonces
that you try will work, which is a really huge number. One approximation is that it's greater than the
human population of Earth squared. So, if every person on Earth was themselves their own planet
Earth with seven billion people on it, the total number of people would be close to 2°.

Determining the difficulty. The mining difficulty changes every 2016 blocks, which are found about
once every 2 weeks. It is adjusted based on how efficient the miners were over the period of the
previous 2016 blocks according to this formula:

next_difficulty = (previous_difficulty * 2016 * 10 minutes) / (time to mine last 2016 blocks)

Note that 2016*10 minutes is exactly two weeks, so 2016 blocks would take two weeks to mine 2016
blocks if a block were created exactly every 10 minutes. So the effect of this formula is to scale the
difficulty to maintain the property that blocks should be found by the network on average about once
every ten minutes. There’s nothing special about 2 weeks, but it’s a good trade-off. If the period were
much shorter, the difficulty might fluctuate due to random variations in the number of blocks found in
each period. If the period were much higher, the network’s hash power might get too far out of
balance with the difficulty.

Each Bitcoin miner independently computes the difficulty and will only accept blocks that meet the
difficulty that they computed. Miners who are on different branches might not compute the same
difficulty value, but any two miners mining on top of the same block will agree on what the difficulty
should be. This allows consensus to be reached.
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You can see in Figure 5.3 that over time the mining difficulty keeps increasing. It's not necessarily a
steady linear increase or an exponential increase, but it depends on activity in the market. Mining
difficulty is affected by factors like how many new miners are joining, which in turn may be affected
by the current exchange rate of Bitcoin. Generally, as more miners come online and mining hardware
gets more efficient, blocks are found faster and the difficulty is increased so that it always takes about

ten minutes to find a block.

In Figure 5.3 you can see that in the red line on the graph there's a step function of difficulty even
though the overall network hash rate is growing smoothly. The discrete step results from the fact that

the difficulty is only adjusted every 2016 blocks.

Another way to view the network’s growth rate is to consider how long it takes to find a block on
average. Figure 5.4 (a) shows how many seconds elapse between consecutive blocks in the block
chain. You can see that this gradually goes down, jumps up and then gradually goes down again. Of
course what's happening is that every 2016 blocks the difficulty resets and the average block time
goes back up to about ten minutes. Over the next period the difficulty stays unchanged, but more and
more miners come online. Since the hash power has increased but the difficulty has not, blocks are
found more quickly until the difficulty is again adjusted after 2016 blocks, or about two weeks.
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Figure 5.3: Mining difficulty over time (mid-2014). Note that the y-axis begins at 80,000 TH/s.
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Figure 5.4 (a) : Time to find a block (early 2014). Note that the y-axis begins at 460 seconds. Due to
continued rapid growth in mining power during this time, the time to find a block decreased steadily
within each two-week window. Source: bitcoinwisdom.com
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Figure 5.4 (b) : Time to find a block (early 2015). Note that the y-axis begins at 540 seconds. As the
growth of the network has slowed, the time to find each block is much closer to 10 minutes and is
occasionally over during periods where the network’s hash power actually shrinks. Source:
bitcoinwisdom.com

Even though the goal was for a block to be found every ten minutes on average, for most of 2013 and

2014 it was closer to about nine minutes on average and would approach 8 minutes at the end of

each two week cycle. Quick calculations show that this requires an astonishing 25% growth rate every

two weeks, or several hundred fold per year.

Unsurprisingly, this was not sustainable forever and in 2015 the growth rate has been much slower
(and occasionally negative). In Figure 5.4(b), we can see that as the mining power is closer to a

Difficulty
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steady-state, the period to find each block stays much closer to 10 minutes. It can even take longer
than 10 minutes, in which case there will be a difficulty decrease. Once considered unthinkable, this
has happened fairly regularly in 2015.

While there have been no catastrophic declines of the network’s mining power so far, there’s no
inherent reason why that cannot happen. One proposed scenario for Bitcoin’s collapse is a “death
spiral” in which a dropping exchange rate makes mining unprofitable for some miners, causing an
exodus, in turn causing the price to drop further.

5.2 Mining Hardware

We've mentioned that the computation that miners have to do is very difficult. In this section, we’ll
discuss why it is so computationally difficult and take a look at the hardware that miners use to
perform this computation.

The core of the difficult computation miners are working on is the SHA-256 hash function. We
discussed hash functions abstractly in Chapter 1. SHA-256 is a general purpose cryptographic hash
function that’s part of a bigger family of functions that was standardized in 2001 (SHA stands for
Secure Hash Algorithm). SHA-256 was a reasonable choice as this was strongest cryptographic hash
function available at the time when Bitcoin was designed. It is possible that it will become less secure
over the lifetime of Bitcoin, but for now it remains secure. Its design did come from the NSA (US
National Security Agency), which has led to some conspiracy theories, but it's generally believed to be
a very strong hash function.

A closer look at SHA-256. Figure 5.5 shows more detail about what actually goes on in a SHA-256
computation. While we don't need to know all of the details to understand how Bitcoin works, it’s
good to have a general idea of the task that miners are solving.

SHA-256 maintains 256 bits of state. The state is split into eight 32-bit words which makes it highly
optimized for 32-bit hardware. In each round a number of words in the state are taken — some with
small bitwise tweaks applied — and added together mod 32. The entire state is then shifted over with
the result of the addition becoming the new left-most word of the state. The design is loosely inspired
by simpler bitwise Linear Feedback Shift Registers (LFSRs).

Sidebar: the SHA family. The “256” in SHA-256 comes from its 256-bit state and output. Technically
SHA-256 is one of several closely-related functions in the SHA-2 family, including SHA-512 (which
has a larger state and is therefore more secure). There is also SHA-1, an earlier generation with
160-bit output which is now considered insecure but is still implemented in Bitcoin script.

Although the SHA-2 family, including SHA-256, are still considered to be cryptographically secure,
the next generation SHA-3 family has now been picked by a contest. SHA-3 is in the final stages of
standardization today, but it wasn't available at the time Bitcoin was designed.
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Figure 5.5 shows just one round of the SHA-256 compression function. A complete computation of
SHA-256 does this for 64 iterations. During each round, there are slightly different constants applied
so that no iteration is exactly the same.
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Figure 5.5 : The structure of SHA-256. This is one round of the compression function.

The task for miners is to compute this function as quickly as possible. Remember that miners are
racing each other so the faster they do this, the more they earn. To do this, they need to be able to
manipulate 32-bit words, do 32-bit modular addition and also do some bitwise logic.

As we will see shortly, Bitcoin actually requires SHA-256 to be applied twice to a block in order to get
the hash that is used by the nodes. This is a quirk of Bitcoin. The reasons for the double computation
are not fully specified, but at this point, it’s just something that miners have to deal with.

CPU mining. The first generation of mining was all done on general purpose computers — that is
general purpose central processing units (CPUs). In fact, CPU mining was as simple as running the
code shown in Figure 5.6. That is, miners simply searched over nonces in a linear fashion, computed
SHA 256 in software and checked if the result was a valid block. Also, notice in the code that as we
mentioned, SHA-256 is applied twice.
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TARGET = (65535 << 208) / DIFFICULTY;
coinbase_nonce = 0;
while (1) {
header = makeBlockHeader(transactions, coinbase_nonce);
for (header_nonce = 9; header_nonce < (1 << 32); header_nonce++){
if (SHA256(SHA256(makeBlock(header, header_nonce))) <
TARGET)
break; //block found!

}

coinbase_nonce++;

}

Figure 5.6 : CPU mining pseudocode.

How fast will this run on a general purpose computer? On a high-end desktop PC you might expect to
compute about 20 million hashes per second (MH/s). At that speed, it would take you several
hundred thousand years on average at the early-2015 difficulty level (2¢7) to find a valid block. We
weren’t kidding when we said mining was going to be a difficult slog!

If you're mining on a general purpose PC today, CPU mining is no longer profitable with the current
difficulty. For the last few years, anyone trying to mine on a CPU probably doesn’t understand how
Bitcoin works and was probably pretty disappointed that they never made any money doing it.

GPU mining. The second generation began when people started to get frustrated with how slow their
CPUs were and instead used their graphics card, or graphics processing unit (GPU).

Almost every modern PC has a GPU built-in to support high performance graphics. They’re designed
to have high throughput and also high parallelism, both of which are very useful for Bitcoin mining.
Bitcoin mining can be parallelized easily because you can try computing multiple hashes at the same
time with different nonces. In 2010, a language called OpenCL was released. OpenCL is a general
purpose language to do things other than graphics on a GPU. It's a high level-language and over time
people have used it to run many types of computation more quickly on graphics cards. This paved the
way for Bitcoin mining on GPUs.

Mining with graphics cards had several attractive properties at the time. For one thing, they're easily
available and easy for amateurs to set up. You can order graphics cards online or buy them at most
big consumer electronics stores. They’re the most accessible high-end hardware that's available to the
general public. They also have some properties that make them specifically good for Bitcoin mining.
They're designed for parallelism so they have many Arithmetic Logic Units (ALUs) that can be used for
simultaneous SHA-256 computations. Some GPUs also have specific instructions to do bitwise
operations that are quite useful for SHA-256.

Most graphics cards can also be overclocked, meaning you can run them faster than they're actually
designed for if you want to take on the risk that they might overheat or malfunction. This is a property
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gamers have demanded for years. With Bitcoin mining, it might be profitable to run the chip much
faster than it was designed for even if you induce a few errors by doing so.

For example, say you can run your graphics card 50 percent faster but doing so will cause errors in the
SHA-256 computation to 30 percent of the time. If an invalid solution is erroneously declared valid by
the graphics card — something that would happen rarely — you can always double-check it on your
CPU. On the other hand, if a valid solution is erroneously missed, you’d never know. But if your speed
increase from overclocking can overcome the decrease in output due to errors, you’d still come out
ahead. In the above example, the throughput is 1.5x compared to not overclocking, whereas the
success rate is 0.7x. The product is 1.05, which means overclocking increases your expected profits by
5%. People have spent considerable time optimizing exactly how much they should overclock a given
chip to maximize profits.

Finally, you can drive many graphics cards from one motherboard and CPU. So you can take your
computer, which will be running your actual Bitcoin node which gathers transactions from the
network and assembles blocks, and attach multiple graphics cards to it to try to find the right nonces
to make the SHA-256 of the block valid. Many people created some really interesting home-brewed
setups like this one shown in Figure 5.7 to drive many, many GPUs from a single CPU. This was still in
the early days of Bitcoin when miners were still mostly hobbyists without much experience running
servers, but they came up with some quite ingenious designs for how to pack many graphics cards
into a small place and keep them cool enough to operate.

Figure 5.7: A home-built rack of GPUs used for Bitcoin mining. You can also see the fans that
they used to build a primitive cooling system. Source: LeonardH, cryptocurrenciestalk.com.
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Disadvantages of GPU mining. GPU mining has some disadvantages. GPUs have a lot of hardware
built into them for doing video processing that can’t be utilized for mining. Specifically, they have a
large number of floating point units that aren’t used at all in SHA-256. GPUs also don't have the
greatest cooling characteristics when you put a lot of them next to one another. They’re not designed
to run side by side as they are in the picture; they're designed to be in a single box doing graphics for
one computer.

Miners vs. Gamers. According to folklore, by 2011 Bitcoin miners were purchasing enough GPUs to
upset the normal market. This caused friction with the gaming community who found it increasingly
difficult to find certain popular GPUs in local electronics stores. Interestingly, however, it may have
increased interest in Bitcoin mining as many of these frustrated gamers learned about the currency
to understand where all the GPUs were going, with some of gamers becoming miners themselves!

GPUs can also draw a fairly large amount of power, so a lot of electricity is used relative to a
computer. Another disadvantage initially was that you had to either build your own board or buy
expensive boards to house multiple graphics cards.

On a really high-end graphics card with aggressive tuning you might get as high as 200 MH/s, or 200
million hashes per second, an order of magnitude better than you would be doing with a CPU. But
even with that improved performance, and even if you're really enterprising and used one hundred
GPUs together, it would still take you over 300 years on average to find a block at the early-2015
difficulty level. As a result, GPU mining is basically dead for Bitcoin today, though it still shows up
sometimes in early-stage altcoins.

FPGA mining. Around 2011 some miners started switching from GPUs to FPGAs, or Field
Programmable Gate Arrays, after the first implementation of Bitcoin mining came out in Verilog, a
hardware design language that’s used to program FPGAs. The general rationale behind FPGAs is to try
to get close as possible to the performance of custom hardware while also allowing the owner of the
card to customize it or reconfigure it “in the field.” By contrast, custom hardware chips are designed
in a factory and do the same thing forever.

FPGAs offer better performance than graphics cards, particularly on “bit fiddling” operations which
are trivial to specify on an FPGA. Cooling is also easier with FPGAs and, unlike GPUs, you can
theoretically use nearly all of the transistors on the card for mining. Like with GPUs, you can pack
many FPGAs together and drive them from one central unit, which is exactly what people began to do
(see Figure 5.8). Overall, it was possible to build a big array of FPGAs more neatly and cleanly than you
could with graphics cards.

Using an FPGA with a careful implementation, you might get up to a GH/s, or one billion hashes per
second. This is certainly a large performance gain over CPUs and GPUs, but even if you had a hundred
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boards together, each with a 1 GH/s throughput, it would still take you about 50 years on average to
find a Bitcoin block at the early-2015 difficulty level.

Figure 5.8: A home-built rack of FPGAs. Although you don't see the cooling setup pictured here, a
rack like this would need a cooling system.

Despite the performance gain, the days of FPGA mining were quite limited. Firstly, they were being
driven harder for Bitcoin mining — by being on all the time and overclocked — than consumer grade
FPGAs were really designed for. Because of this, many people saw errors and malfunctions in their
FPGAs as they were mining. It also turned out to be difficult to optimize the 32-bit addition step which
is critical in doing SHA-256. FPGAs are also less accessible-you can't buy them at most stores and
there are fewer people who know how to program and set up an FPGA than a GPU.

Most importantly though, even though FPGAs improved performance the cost-per-performance was
only marginally improved over GPUs. This made FPGA mining was a rather short-lived phenomenon.
Whereas GPU mining dominated for about a year or so, the days of FPGA mining were far more
limited — lasting only a few months before custom ASICs arrived.

ASIC mining. Mining today is dominated by Bitcoin ASICs, or application-specific integrated circuits.
These are chips that were designed, built, and optimized for the sole purpose of mining Bitcoins.
There are a few big vendors that sell these to consumers with a good deal of variety: you can choose
between slightly bigger and more expensive models, more compact models, as well as models with
varying performance and energy consumption claims.

Designing ASICs requires considerable expertise and their lead-time is also quite long. Nevertheless,
Bitcoin ASICs were designed and produced surprisingly quickly. In fact, analysts have said that this
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may be the fastest turnaround time in the history of integrated circuits from specifying a problem and
to have a working chip in people's hands. Partially as a result of this, the first few generations of
Bitcoin ASICs were quite buggy and most of them didn't quite deliver the promised performance
numbers. Bitcoin ASICs have since matured and there are now fairly reliable ASICs available.

Up until 2014, the lifetime of ASICs was quite short due to the rapidly increasing network hash rate,
with most boards in the early ASIC era growing obsolete in about six months. Within this time, the
bulk of the profits are made up front. Often, miners will make half of the expected profits for the
lifetime of the ASIC during just the first six weeks. This meant shipping speed can become a crucial
factor in making a profit. Due to the immaturity of the industry though, consumers often experienced
shipping delays with boards often nearly obsolete by the time they arrived. As the growth rate of
Bitcoin’s hash power has stabilized, mining equipment has a longer life time, but the early era saw
many frustrated customers and accusations of fraud by vendors.

For much of Bitcoin’s history, the economics of mining haven’t been favorable to the small miner who
wants to go online, order mining equipment, and start making money. In fact, in most cases people
who have placed orders for mining hardware would have lost money based on the calculation that
they made at the time. Until 2013 though, the exchange rate of Bitcoin rose enough to bail most
customers out from losing money outright. In effect, mining has been an expensive way to simply bet
that the price of Bitcoin would rise, and many miners — even though they've made money mining
Bitcoins — would have been better off if they had just taken the money that they were going to spend
on mining equipment, invested it in bitcoins, and eventually sold them at a profit.

You can still order Bitcoin mining equipment today and we wouldn’t want to discourage that as a way
to learn about Bitcoin and cryptocurrencies. However, we’ll note again that this is not an advisable
way to make money. Most ASICs sold commercially today are unlikely to pay for themselves in mining
rewards once you factor in the price of electricity and cooling.

Today : Professional mining. Today mining has mostly moved away from individuals and toward
professional mining centers. Exact details about how these centers operate are not very well known
because companies want to protect their setups to maintain a competitive advantage. Presumably,
these operations maintain profitability by buying slightly newer and more efficient ASICs than are
available for general sale at a bulk discount. In Figure 5.9, we see a picture of a professional mining
center in the Republic of Georgia.
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Figure 5.9: BitFury mining center, a professional mining center in the republic of Georgia.

When determining where to set up a mining center, the three biggest considerations are: climate,
cost of electricity, and network speed. In particular, you want a cold climate to keep cooling costs low.
Cooling is particularly challenging with Bitcoin mining, which is estimated to use an order of
magnitude more electricity per square foot than traditional data centers (and hence give off an order
of magnitude more heat). You obviously want cheap electricity. You also want a fast network
connection to be well connected to other nodes in the Bitcoin peer-to-peer network so that you can
hear about new blocks as quickly as possible after they’ve been announced. Georgia and Iceland have
reportedly been popular destinations for Bitcoin mining data centers.

Similarities to gold mining. While ‘mining’ may seem to be just a cute name, if we step back and think
about the evolution of mining, we can see interesting parallels between Bitcoin mining and gold
mining. For starters, both saw a similar gold rush mentality with many young, amateur individuals
eager to get into the business as soon as possible.

Whereas with Bitcoin mining we've seen a slow evolution from CPUs to GPUs to FPGAs, to now ASICs,
gold mining saw an evolution from individuals with gold pans to small groups of people with sluice
boxes, to placer mining — consisting of large mining groups blasting away hillsides with water — to
modern gold mining which often utilizes gigantic open pit mines to extract tons of raw material from
the earth (See Figure 5.10). Both with Bitcoin and with gold, the friendliness and accessibility to
individuals has gone down over time and large companies have eventually consolidated most of the
operations (and profits). Another pattern that has emerged in both places is that most of the profits
have been earned by those selling equipment, whether gold pans or mining ASICs, at the expense of
individuals hoping to strike it rich.
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Figure 5.10: Evolution of mining. We can see a clear parallel between the evolution of Bitcoin

mining and the evolution of gold mining. Both were initially friendly to individuals and over time
became massive operations controlled by large companies.

The future. Currently ASIC mining is the only realistic means to be profitable in Bitcoin and it’s not
very friendly to small miners. This raises a few questions about what will happen going forward. Are
small miners out of Bitcoin mining forever, or is there a way to re-incorporate them? Moreover, does
ASIC mining and the development of professional mining centers violate the original vision of Bitcoin
which was to have a completely decentralized system in which every individual in the network mined
on his or her own computer?

Furthermore, if this is indeed a violation of Satoshi Nakamoto’s original vision for Bitcoin, would we be
better off with a system in which the only way to mine was with CPUs? In Chapter 8, we'll consider
these questions and look at ideas for alternative forms that might be less friendly to ASICs.

The cycle repeats itself. It's also worth noting here that several smaller altcoins have indeed used a
different puzzle than SHA-256, but have seen a similar trajectory in mining as Bitcoin. We'll discuss
these altcoins more in Chapter 9 but recall that for ASICs there is still a long lead time between
designing a chip and shipping it, so if a new altcoin uses an new puzzle (even just a modified version of
SHA-256), this will buy some time in which ASICs are not yet available. Typically, mining will proceed
just at Bitcoin did from CPUs to GPUs and/or FPGAs to ASICs (if the altcoin is very successful, like
LiteCoin).

Thus, one strategy for smaller miners may be to try to pioneer new altcoins which aren’t yet valuable
enough for large mining groups to invest in-just like small gold miners who have been driven out of
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proven goldfields might try prospecting unproven new areas. Of course, this means the pioneers are
facing a significant risk that the altcoin will never succeed.

5.3 Energy consumption and ecology

We saw how large professional mining data centers have taken over the business of Bitcoin mining,
and how this parallels the movement to pit mining in gold mining. You may be aware that pit mines
have been a major source of concern over the years due to the damage they cause to the
environment. Bitcoin is not quite at that level yet, but it is starting to use a significant amount of
energy which has become a topic of discussion. In this section we'll see how much energy Bitcoin
mining is using and what the implications are for both the currency and for our planet.

Thermodynamic limits. There's a physical law known as Landauer’s principle developed by Ralph
Landauer in the 1960s that states that any non-reversible computation must use a minimum amount
of energy. Logically irreversible computations can be thought of as those which lose information.
Specifically, the principle states that erasing any bit must consume a minimum of (kT In 2) joules,
where k is the Boltzmann constant (approximately 1.38x10°% J/K), T is the temperature of the circuit
in kelvins, and In 2 is the natural logarithm of 2, roughly 0.69. This a tiny amount of energy per bit, but
this does provide a hard lower bound on energy usage from basic physics.

We're not going to go through the derivation here, but the high-level idea is that every time you flip
one bit in a non-reversible way there's a minimum number of joules that you have to use. Energy is
never destroyed; it's converted from one form into another. In the case of computation the energy is
mostly transformed from electricity, which is useful, high-grade energy, into heat which is dissipated
into the environment.

As a cryptographic hash function, SHA-256 is not a reversible computation. We can recall from
Chapter 1 that this is a basic requirement of cryptographic hash functions. So, since non-reversible
computation has to use some energy and SHA-256 — the basis of Bitcoin mining — is not reversible,
energy consumption is an inevitable result of Bitcoin mining. That said, the limits placed by Landauer's
principle are far, far below the amount of electricity that is being used today. We're nowhere close to
the theoretical optimal consumption of computing, but even if we did get to the theoretical optimum
we would still be using energy to perform Bitcoin mining.

How does Bitcoin mining use energy? There are three steps in the process that requires energy, some
of which may not be so obvious:

1. Embodied energy. First, Bitcoin mining equipment needs to be manufactured. This requires
physical mining of raw materials as well as turning these raw materials into a Bitcoin mining ASIC,
both of which require energy. This is the embodied energy. As soon as you receive a Bitcoin mining
ASIC in the mail, you've already consumed a lot of energy — including the shipping energy, of course
— before you've even powered it on!
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Hopefully, over time the embodied energy will go down as less and less new capacity comes online. As
fewer people are going out to buy new mining ASICs, they're going to be obsoleted less quickly, and
the embodied energy will be amortized over years and years of mining.

2. Electricity. When your ASIC is powered on and mining, it consumes electricity. This is the step that
we know has to consume energy due to Landauer's principle. As mining rigs get more efficient, the
electrical energy cost will go down. But because of Landauer’s principle, we know that it will never
disappear; electrical energy consumption will be a fact of life for Bitcoin miners forever.

3. Cooling. A third important component of mining that consumes energy is cooling off your
equipment to make sure that it doesn't malfunction. If you're operating at a small scale in a very cold
climate your cooling cost might be trivial, but even in cold climates once you get enough ASICs in a
small space you're going to have to pay extra to cool off your equipment from all of the waste heat
that it is generating. Generally, the energy used to cool off mining equipment will also be in the form
of electricity.

Mining at scale. Both embodied energy and electricity decrease (per unit of mining work completed)
when operating at a large scale. It's cheaper to build chips that are designed to run in a large data
center, and you can deliver the power more efficiently as you don't need as many power supplies.

When it comes to cooling, however, the opposite is usually true: cooling costs tend to increase the
larger your scale is. If you want to run a very large operation and have a lot of Bitcoin mining
equipment all in one place, there’s less air for the heat to dissipate into in the area surrounding your
equipment. Your cooling budget will therefore increase at scale (per unit of mining work completed)
unless you scale your physical area along with the number of chips you have in use.

Estimating energy usage. How much energy is the entire Bitcoin system using? Of course, we can't
compute this precisely because it's a decentralized network with miners operating all over the place
without documenting exactly what they're doing. But there are two basics approaches to estimating
how much energy Bitcoin miners are using collectively. We’ll do some back-of-the-envelope
calculations here based on early 2015 values. We must emphasize that these figures are very rough,
both because some of the parameters are hard to estimate and because they change quickly. At best
they should be treated as order-of-magnitude estimates.

Top-down approach. The first approach is a top-down approach. We start with the simple fact that
every time a block is found today 25 bitcoins, worth about 6,500 US dollars, are given to the miners.
That's about 11 dollars every second, being created out of thin air in the Bitcoin economy and given to
the miners.

Now let’s ask this question: if the miners are turning all of those 11 dollar per second into electricity,
how much can they buy? Of course miners aren’t actually spending all of the revenue on electricity,
but this will provide an upper bound on the electricity being used. Electricity prices vary greatly, but
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we can use as an estimate that electricity costs around 10 cents per kilowatt-hour (kWh) at an
industrial rate in the US, or equivalently 3 cents per megajoule (MJ). If Bitcoin miners were spending
all 11 dollars per second of earnings buying electricity, they could purchase 367 megajoules per
second, consuming a steady 367 megawatts (MW).

Units of energy and power. In the International System of Units (Sl), energy is measured in joules.
A watt is a unit of power, where one watt is defined as one joule per second.

Bottom-up approach. A second way to estimate the cost is to use a bottom-up approach. In this
approach, we look at the number of hashes the miners are actually computing, which we know by
observing the difficulty of each block. If we then assume that all miners are using the most efficient
hardware, we can derive a lower bound on the electricity consumption.

Currently, the best claimed efficiency figure amongst commercially available mining rigs is about 3
GH/s/W. That is, the most cutting-edge ASICs claim to perform three billion hashes per second while
consuming 1 watt of power. The total network hashrate is about 350,000,000 GH/s, or equivalently
350 petahashes per second (PH/s). Multiplying these two together, we see that it takes about 117
MW to produce that many hashes per second at that efficiency. Of course this figure excludes all of
the cooling energy and all of the embodied energy that's in those chips, but we're doing an optimal
calculation and deriving a lower bound so that’s okay.

Combining the top down and bottom up approaches, we can derive a ballpark estimate of the amount
of power being used for Bitcoin miners is probably on the order of a few hundred MW.

How much is a megawatt? To build up intuition, we can see how much large power plants produce.
One of the largest power plants in the world, the Three Gorges Dam in China is a 10,000 MW power
plant. A typical large hydroelectric power plant produces around 1,000 MW. The largest nuclear
power plant in the world, Kashiwazaki-Kariwa in Japan, is a 7,000 MW plant, whereas the average
nuclear power plant is about 4,000 MW. A major coal-fired plant produces about 2,000 MW.

According to our estimates then, the whole Bitcoin network is consuming perhaps 10% of a large
power plant’s worth of electricity. Although this is a significant amount of power, it's still small
compared to all the other things that people are using electricity for on the planet.

Is Bitcoin mining wasteful? It’s often said Bitcoin “wastes” energy because the energy expended on
SHA-256 computations which don’t serve any other useful purpose. It’s important to recognize,
however that any payment system requires energy and electricity. With traditional currency,
considerable energy is consumed printing currency and running ATM machines, coin sorting
machines, cash registers, and payment processing services, as well as transporting money and gold
bullion in armored cars. You could equally argue that all of this energy is “wasted” in that it doesn't
serve any purpose besides maintaining the currency system. So, if we value Bitcoin as a useful
currency system, then the energy required to support it is not really being wasted.
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Still, if we could replace Bitcoin mining with a less energy-intensive puzzle and still have a secure
currency, this would be a positive change. We'll see in Chapter 8, however, that we don’t know if
that’s actually possible

Repurposing energy. Another idea to make Bitcoin more eco-friendly is to capture the heat generated
from Bitcoin mining do something useful with it instead of just heating up the atmosphere. This model
of capturing waste heat from computation is called the approach is called the data furnace approach.
The concept is that instead of buying a traditional electric heater to heat your home, or to heat water
in your home, you could buy a heater which doubled as a Bitcoin mining rig, mining bitcoins and
heating up your home as a byproduct of that computation. It turns out that the efficiency of doing this
isn't much worse than buying an electric heater, and perhaps this would be no more complicated for a
home consumer than plugging their heater into their Internet connection as well as their electricity
outlet.

There are a few drawbacks to this approach. Although it’s about as efficient as using an electric
heater, electric heaters are themselves much less efficient than gas heaters. Besides, what happens
when everybody turns off their Bitcoin mining rig during the summer (or at least everybody in the
Northern Hemisphere)? Mining hash power might go down seasonally based on how much heat
people need. It might even go down on days that happen to be warmer than average! This would
caused many interesting effects for Bitcoin consensus if the data furnace model actually caught on.

The question of ownership is also not clear. If you buy a Bitcoin data furnace, do you own the Bitcoin
mining rewards that you get, or does the company that sold them to you? Most people don't have
any interest in Bitcoin mining — and probably never will — so it might make more sense to buy it as
an appliance and have the company that sold it to you keep the rewards. This might mean the heater
is sold at a slight loss then, in which case some enterprising users might want to buy them and modify
them to keep the mining rewards for themselves, leading to a potentially ugly DRM (Digital Rights
Management) battle.

Turning electricity in cash. Another long-term question posed by Bitcoin is that it might provide the
most efficient means of turning electricity into cash. Imagine a world in which Bitcoin mining ASICs are
a readily-available commodity and the dominant cost of mining is electricity. In effect, this would
mean providing free or low-cost electricity is open to new forms of abuse.

In many countries around the world, governments subsidize electricity, particularly industrial
electricity. Among other reasons, they often do so to encourage industry to be located in their
country. But Bitcoin provides a good way to turn electricity into cash, which might cause governments
to rethink that model if their subsidized electricity is converted en masse to bitcoins. Electricity
subsidies are intended to attract businesses that will contribute to the country’s economy and labor
market and subsidizing Bitcoin mining may not have the intended effect.
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An even bigger problem is the billions of freely available electrical outlets around the world in
people’s homes, universities, hotels, airports, office buildings and so on. People might try to plug in
mining equipment so that they can profit while someone else is paying the electricity bill. In fact, they
might use outdated hardware and not bother to upgrade, considering that they will not be paying the
electricity bill. It is quite daunting to consider the possibility of monitoring every power outlet in the
world of for potential unauthorised used a source of electricity for Bitcoin mining.

5.4 Mining pools

Consider the economics of being a small miner. Suppose you're an individual who spent $6,000 of
your hard-earned money to buy a nice, shiny, new Bitcoin mining rig. Say that the performance is
such that you expect to find a block every 14 months (and remember that a block is worth about
6,500 dollars as of early 2015).

Amortized, the expected revenue of your miner is perhaps $400 per month once you factor in
electricity and other operating costs. If you actually got a check in the mail every month for $400, it
would make a lot of sense to buy the mining rig. But remember that mining is a random process. You
don't know when you're going to find the next block, and until that happens you won’t earn anything.

High variance. If we look at the distribution of how many blocks you're likely to find in the first year,
the variance is pretty high and the expected number is quite low. Because you find blocks at a fixed,
low rate which is independent of the time since the last block you found, your expected number of
blocks is very well approximated by a Poisson distribution. A Poisson distribution arises if you have N
independent trials each with a chance A /N of success as N approaches infinity. With Bitcoin mining,
each individual nonce attempted is in fact a random trial with a small chance of success, so N is
indeed very large even for small miners and the approximation is very good.

If you expect to find about 1 block per 14 months (a Poisson distribution with A4 =6/7 blocks/year),
there's a greater than 40% chance that you won't find any blocks within the first year. For an
individual miner, this could be devastating. You spent thousands of dollars on the miner, paid lots in
electricity to run it, and received nothing in return. There's a roughly 36% chance that you'll find one
block within the first year which means maybe you're barely scraping by, provided your electricity
costs weren’t too high. Finally, there's a smaller chance that you'll find two or more blocks, in which
case you might make out with a nice profit.
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Figure 5.11: lllustration of uncertainty in mining. Assuming that the global hash rate is constant and
the mean time to find a block is 14 months, the variance for a small miner is quite high.

These numbers are only approximate, but the main point here is that even though on expectation you
might be doing okay — that is, earning enough to make a return on your investment — the variance is
sufficiently high that there's a big chance that you'll make nothing at all. For a small miner, this means
mining is a major gamble.

Mining pools. Historically, when small business people faced a lot of risk, they formed mutual
insurance companies to lower that risk. Farmers, for example, would get together and agree that if
any individual farmer’s barn burned down the others would share their profits with that farmer. Could
we have a mutual insurance model that works for small Bitcoin miners?

A mining pool is exactly that — mutual insurance for Bitcoin miners. A group of miners will form a
pool and all attempt to mine a block with a designated coinbase recipient. That recipient is called the
pool manager. So, no matter who actually finds the block, the pool manager will receive the rewards.
The pool manager will take that revenue and distribute it to all the participants in the pool based on
how much work each participant actually performed. Of course, the pool manager will also probably
take some kind of cut for their service of managing the pool.

Assuming everybody trusts the pool manager, this works great for lowering miners’ variance. But how
does a pool manager know how much work each member of the pool is actually performing? How can
the pool manager divide the revenue commensurate with the amount of work each miner is doing?
Obviously the pool manager doesn't want to just take everyone's word for it because people might
claim that they’ve done more than they actually did.

Mining shares. There's an elegant solution to this problem. Miners can prove probabilistically how
much work they're doing by outputting shares, or near-valid blocks. Say the target is a number
beginning with 67 zeros. A block’s hash must be lower than the target for the block to be valid. In the
process of searching for such a block, miners will find some blocks with hashes beginning with a lot of
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zeros, but not quite 67. Miners can show these nearly valid blocks to prove that they are indeed
working. A share might require say 40 or 50 zeros, depending on the type of miners the pool is geared
for.

4AA087F0AS52ED2093FA816E53B9B6317F9B8C1227A61F9481AFED67301F2E3FB
D3E51477DCAB108750A5BC9093F6510759CC880BB171A5B77FB4A34ACA27DEDD
00000000008534FF68B98935D090DF5669E3403BD16F1CDFD41CF17D6B474255
BB34ECA3DBB52EFFAB104EBBC0974841EF2F3A59EBBC4474A12F9F595EB81F4B
00000000002F891C1E232F687E41515637F7699EAOF462C2564233FE082BBOAF
0090488133779E7E98177AF1C765CF02D01AB4848DF555533B6C4CFCA201CBAl
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Figure 5.12: Mining Shares. Miners continually try to find blocks with a hash below the target. In the
process, they’ll find other blocks whose hashes contain fewer zeros — but are still rare enough to
prove that they have been working hard. In this figure, the dull green hashes are shares, while the
bright green hash is from a valid block (which is also a valid share).

The pool manager will also run a Bitcoin node on behalf of participants, collecting transactions and
assemble them into a block. The manager will include their own address in the coinbase transaction
and send the block to all of the participants in the pool. All pool participants work on this block, and
they prove that they've been working on it by sending in shares.

When a member of the pool finds a valid block, they sends it to the pool manager who distributes the
reward in proportion to the amount of work done. The miner who actually finds the block is not
awarded a special bonus, so if another miner did more work than, that other miner will be paid more
even though they weren’t the one who ended up finding a valid block. See Figure 5.13.
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Figure 5.13: Mining rewards. Three participants pictured here are all working on the same block. They
are awarded commensurate with the amount of work done. Even though the miner on the right was
the one to find the valid block, the miner on the left is paid more since this miner did more work.
There is (typically) no bonus paid to the miner who actually finds the block.

There are a few options for exactly how exactly the pool manager calculates how much to pay each
miner based on the shares they submit. We’ll look at two of the common, simpler ones. There are
many other schemes that are also used, but these will illustrate the trade-offs between reward
schemes.

Pay-per-share. In the pay per share model, the pool manager pays a flat fee for every share above a
certain difficulty for the block that the pool is working on. In this model, miners can send their shares
to the pool manager right away and get paid without waiting for the pool to find a block.

In some ways, the pay-per-share model is the best for miners. They are guaranteed a certain amount
of money every time they find a share. The pool manager essentially absorbs all of the risk since they
pay rewards even if a block is not found. Of course, as a result of the increased risk, in the
pay-per-share model, the pool manager will probably charge higher fees as compared with other
models.

One problem with the pay-per-share model is that miners don’t actually have any incentive to send
valid blocks to the pool manager. That is, they can discard valid blocks but still be paid the same
rewards, which will cause a big loss to the pool. A malicious pool manager might attack a competing
pool in this fashion to try to drive them out of business.

0x00000000000000003£89. ..
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Proportional. In the proportional model, instead of paying a flat fee per share, the amount of
payment depends on whether or not the pool actually found a valid block. Every time a valid block is
found the rewards from that block are distributed to the members proportional to how much work
they actually did.

In the proportional model, the miners still bear some risk proportional to the risk of the pool in
general. But if the pool is large enough, the variance of how often the pool finds blocks will be fairly
low. Proportional payouts provide lower risk for the pool manager because they only pay out when
valid blocks are found. This also gets around the problem that we mentioned with the pay-per-share
model, as miners are incentivized to send in the valid blocks that they find because that triggers
revenue coming back to them.

The proportional model requires a little more work on behalf of the pool managers to verify,
calculate, and distribute rewards as compared to the flat pay-per-share model.

Pool hopping. Even with just these two types of pools, we can see that miners might be incentivized
to switch between the pools at different times. To see this, consider that a purely proportional pool
will effectively pay out a larger amount per share if a block is found quickly, as it always pays one
block reward no matter how long it has been since the last block was found.

A clever miner might try mining in a proportional pool early in the cycle (just after the previous block
was found) while the rewards per share are relatively high, only to switch (“hop”) to a pay-per-share
pool later in the cycle, when the expected rewards from mining in the proportional pool are relatively
low. As a result of this, proportional pools aren’t really practical. More complicated schemes, such as
“pay per last N shares submitted” are more common, but even these are subject to subtle pool
hopping behavior. It remains open how to design a mining pool reward scheme that is not vulnerable
to this kind of manipulation.

History and standardization. Mining pools first started around 2010 in the GPU era of Bitcoin mining.
They instantly became very popular for the obvious reason that they lowered the variance for the
participating miners. They’ve become quite advanced now. There are many protocols for how to run
mining pools and it has even been suggested that these mining pool protocols should be standardized
as part of Bitcoin itself. Just like there's a Bitcoin protocol for running the peer-to-peer network,
mining pool protocols provide a communication API for the pool manager to send all of the members
the details of the block to work on and for the miners to send back to the pool manager the shares
that they're finding. getblocktemplate (GBT) is officially standardised as a Bitcoin Improvement
Proposal (BIP). A competing protocol, Stratum, is currently more popular in practice and is a proposed
BIP. Unlike the Bitcoin protocol itself, it is only a minor inconvenience to have multiple incompatible
mining pool protocols. Each pool can simply pick whichever protocol they like and the market can
decide.
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Some mining hardware even supports these protocols at the hardware level, which will ultimately
limit their development flexibility somewhat. However, this makes it very simple to buy a piece of
mining hardware and join a pool. You just plug it into the wall — both the electricity and your network
connection — choose a pool, and then it will start immediately getting instructions from the pool,
mining and converting your electricity into money.

51% mining pools. As of early 2015, the vast majority of all miners are mining through pools with very
few miners mining “solo” anymore. In June 2014, Ghash.io, the largest mining pool, got so big that it
actually had over 50% of the entire capacity over the Bitcoin network. Essentially Ghash offered such
a good deal to participating miners that the majority wanted to join.

This is something that people had feared for a long time and this led to a backlash against Ghash. By
August, Ghash’s market share had gone down by design as they stopped accepting new participants.
Still, two mining pools controlled about half of the power in the network.
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By April 2015, the situation looks very different and less concentrated, at least on the surface. The
possibility of a pool acquiring 51% is still a concern in the community, but the negative publicity
GHash received has led pools to avoid becoming too large since then. As new miners and pools have
entered the market and standardized protocols have increased the ease of switching between pools
for miners, the market share of different pools has remained quite fluid. It remains to be seen how
things will evolve in the long run.

However, it is worth noting that mining pools might be hiding actual concentration of mining power in
the hands of a few large mining organizations which can participate in multiple mining pools
simultaneously to hide their true size. This practice is called laundering hashes. It remains unknown
how concentrated physical control of mining hardware actually is and mining pools make this quite
difficult to determine from the outside.

Are mining pools a good thing? The advantages of mining pools are that they make mining much
more predictable for the participants and they make it easier for smaller miners to get involved in the
game. Without mining pools, the variance would make mining infeasible for many small miners.

Another advantage of mining pools is that since there's one central pool manager who is sitting on the
network and assembling blocks it makes it easier to upgrade the network. Upgrading the software
that the mining pool manager is running that effectively updates the software that all of the pool
members are running.

The main disadvantage of mining pools, of course, is that they are a form of centralization. It's an
open question how much power the operators of a large mining pool actually have. In theory miners
are free to leave a pool if it is perceived as too powerful, but it’s unclear how often miners do so in
practice.

Another disadvantage of mining pools is that it lowers the population of people actually running a
fully validating Bitcoin node. Previously all miners, no matter how small, had to run their own fully
validating node. They all had to store the entire block chain and validate every transaction. Now, most
miners offload that task to their pool manager. This is the main reason why, as we mentioned in
Chapter 3, the number of fully validated nodes may actually be going down in the Bitcoin network.

If you're concerned about the level of centralization introduced by mining pools, you might ask: could

we redesign the mining process so that we don't have any pools and everybody has to mine for
themselves? We'll consider this question in Chapter 8.

5.5 Mining incentives and strategies

We've spent most of this chapter describing how the main challenge of being a miner is getting good
hardware, finding cheap electricity, getting up and running as fast as you can and hoping for some
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good luck. There are also some interesting strategic considerations that every miner has to make
before they pick which blocks to work on.

1. Which transactions to include. Miners get to choose which transactions they include in a
block. The default strategy is to include any transaction which includes a transaction fee
higher than some minimum.

2. Which block to mine on. Miners also get to decide on top of which block they want to mine.
The default behavior for this decision is to extend the longest known valid chain.

3. Choosing between blocks at the same height. If two different blocks are mined and announced
at around the same time, it results in a 1-block fork, with either block admissible under the
longest valid chain policy. Miners then have to decide which block to extend. The default
behavior is to build on top of the block that they heard about first.

4. When to announce new blocks. When they find a block, miners have to decide when to
announce this to the Bitcoin network. The default behavior is to announce it immediately, but
they can choose to wait some time before announcing it.

Thus miners are faced with many decisions. For each decision there is a default strategy employed by
the Bitcoin reference client, which is run by the vast majority of miners at the time of this writing. It
may be possible though that a non-default strategy is more profitable. Finding such scenarios and
strategies is an active area of research. Let’s look at several such potentially profitable deviations from
default behavior. In the following discussion, we’ll assume there’s a non-default miner who controls
some fraction of mining power which we’ll denote by «.

Forking attack. The simplest attack is a forking attack and the obvious way to profit to perform a
double spend. The miner sends some money to a victim, Bob, in payment for some good or service.
Bob waits and sees that the transaction paying him has indeed been included in the block chain.
Perhaps he follows the common heuristic and even waits for six confirmations to be sure. Convinced
that he has been paid, Bob ships the good or performs the service.

The miner now goes ahead and begins working on an earlier block — before the block that contains
the transaction to Bob. In this forked chain, the miner inserts an alternate transaction — or a double
spend — which sends the coins paid to Bob on the main chain back to one of the miner’s own
addresses.
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Figure 5.15 Forking attack. A malicious miner sends a transaction to Bob and receives some good or
service in exchange for it. The miner then forks the block chain to create a longer branch containing a
conflicting transaction. The payment to Bob will be invalid in this new consensus chain.

For the attack to succeed, the forked chain must overtake the current longest chain. Once this occurs,
the transaction paying Bob no longer exists on the consensus block chain. This will surely happen
eventually if the attacking miner has a majority of the hash power — that is, if & > 0.5. That is, even
though there is a lot of random variation in when blocks are found, the chain that is growing faster on
average will eventually become longer. Moreover, since the miner’s coins have already been spent
(on the new consensus chain), the transaction paying Bob can no longer make its way onto the block
chain.

Is 51% necessary? Launching a forking attack is certainly possible if & >0.5. In practice, it might be
possible to perform this attack with a bit less than that because of other factors like network
overhead. Default miners working on the main chain will generate some stale blocks for the usual
reason: there is a latency for miners to hear about each others’ blocks. But a centralized attacker can
communicate much more quickly and produce fewer stale blocks, which might amount to savings of
1% or more.

Still, at close to 50% the attack may take a long time to succeed due to random chance. The attack
gets much easier and more efficient the further you go over 50%. People often talk about a 51%
attacker as if 51% is a magical threshold that suddenly enables a forking attack. In reality, it’s more of
a gradient.
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Practical countermeasures. It's not clear whether a forking attack would actually succeed in practice.
The attack is detectable, and it’s possible that the community would decide to block the attack by
refusing to accept the alternate chain even though it is longer.

Attacks and the exchange rate. More importantly, it’s likely that such an attack would completely
crash the Bitcoin exchange rate. If a miner carried out such an attack, confidence in the system would
decline and the exchange rate would fall as people seek to move their wealth out of the system. Thus,
while an attacker with 51% of the hashing power might profit in the short term from double-spending,
they might seriously undermine their long-term earning potential to just mine honestly and cash in
their mining rewards.

For these reasons, perhaps a more plausible motivation for a forking attack is to specifically destroy
the currency by a dramatic loss of confidence. This has been referred to as a Goldfinger attack after
the Bond villain that tried to irradiate all the gold in Fort Knox to make it valueless. A Goldfinger
attacker’s goal might be to destroy the currency, possibly to profit either by having shorted Bitcoin or
by having significant holdings in some competing currency.

Forking attack via bribery. Buying enough hardware to control the majority of the hash power
appears to be an expensive and difficult task. But it’s possible that there is an easier way to launch a
forking attack. Whereas it would be really expensive to directly buy enough mining capacity to have
more than everybody else in the world, it might be possible to bribe the people who do control all
that capacity to work on your behalf.

There are a few ways that you could bribe miners. One way is to do this “out of band” — perhaps
locate some large miners and hand them an envelope of cash for working on your fork. A more clever
technique is to create a new mining pool and run it at a loss, offering greater incentives than other
pools. Even though the incentives might not be sustainable, an attacker could keep them going for
long enough to successfully launch a forking attack and perhaps profit. A third technique is to leave
big “tips” in blocks on the forking chain— big enough to cause miners to leave the longest chain and
work on the forking chain in hopes that it will become the longest chain and they can collect the tips.

Whatever the mechanics of the bribing are, the idea is the same: instead of actually acquiring all the
mining capacity directly, the attacker just pays those who already have it to help their fork overcome
the longest chain.

Perhaps miners won’t want to help because to do so would hurt the currency in which they have
invested so much money and mining equipment. On the other hand, while miners as a group might
want to keep the currency solvent, they don’t act collectively. Individual miners might defect and
accept a bribe if they thought they could make more money in the short term. This would be a classic
tragedy of the commons from an economic perspective.

None of this has actually happened and it's an open question if a bribery attack like this could actually
be viable.
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Temporary block-withholding attacks. Say that you just found a block. The default behavior is to
immediately announce it to the network, but if you’re carrying out a temporary block-withholding
attack, you don’t announce it right away. Instead you try to get ahead by doing some more mining on
top of this block in hopes of finding two blocks in a row before the rest of network finds even one,
keeping your blocks secret the whole time.

If you’re ahead of the public block chain by two secret blocks, all of the mining effort of the rest of the
network will be wasted. Other miners will mine on top of what they think is the longest chain, but as
soon as they find a valid block, you can announce the two blocks that you were withholding. That
would instantly be the new longest valid chain and the block that the rest of the network worked so
hard to find would immediately be orphaned and cut off from the longest chain. This has been called
selfish mining. By causing the rest of the network to waste hash power trying to find a block you can
immediately cause to be stale, you hope to increase your effective share of mining rewards.

_ 3

Figure 5.16: lllustration of selfish mining. This shows one of several possible ways in which the attack
could play out. (1) Block chain before attack. (2) Attacker mines a block, withholds it, starts mining on
top of it. (3) Attacker gets lucky, finds a second block before the rest of the network, continues to
withhold blocks. (4) Non-attacker finds a block and broadcasts it. In response, the attacker broadcasts
both his blocks, orphaning the red block and wasting the mining power that went into finding it.

The catch is that you need to get lucky to find two blocks in a row. Chances are that someone else in
the network announces a valid block when you’re only one block ahead. If this happens, you'll want to
immediately announce your secret block yourself. This creates a 1-block fork and every miner will
need to make a decision about which of those blocks to mine on. Your hope is that a large fraction of
other miners will hear about your block first and decide to work on it. The viability of this attack
depends heavily on your ability to win these races, so network position is critical. You could try to peer
with every node so that your block will reach most nodes first.

As it turns out, if you assume that you only have a 50 percent chance of winning these races, selfish
mining is an improvement over the default strategy if & >.25. Even if you lose every race, selfish
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mining is still more profitable if & >.333. The existence of this attack is quite surprising and it's
contrary to the original widely-held belief that without a majority of the network — that is with & <
.5, there was no better mining strategy then the default. So it's not safe to assume that a miner who
doesn't control 50 percent of the network doesn't have anything to gain by switching to an alternate
strategy.

At this point temporary block withholding is just a theoretical attack and hasn’t been observed in
practice. Selfish mining would pretty easy to detect because it would increase the rate of
near-simultaneous block announcements.

Blacklisting and punitive forking. Say a miner wants to blacklist transactions from address X. In other
words, they want to freeze the money held by that address, making it unspendable. Perhaps you
intend to profit off of this by some sort of ransom or extortion scheme demanding that the person
you're blacklisting pay you in order to be taken off of your blacklist. Blacklisting also might be
something that you are compelled to do for legal reasons. Maybe certain addresses are designated as
evil by the government. Law enforcement may demand that all miners operating in their jurisdiction
try to blacklist those addresses.

Conventional wisdom is that there’s no effective way to blacklist addresses in Bitcoin. Even if some
miners refuse to include some transactions in blocks, other miners will. If you’re a miner trying to
blacklist, however, you could try something stronger, namely, punitive forking. You could announce
that you'll refuse to work on a chain containing a transaction originating from this address. If you have
a majority of the hash power, this should be enough to guarantee the blacklisted transactions will
never get published. Indeed, other miners would probably stop trying, as doing so would simply cause
their blocks to be elided in forks.

Feather-forking. Punitive forking doesn’t appear to work without a majority of the network hash
power. By announcing that you'll refuse to mine on any chain that has certain transactions, if such a
chain does come into existence and is accepted by the rest of the network as the longest chain, you
will have cut yourself off from the consensus chain forever (effectively introducing a hard fork) and all
of the mining that you're doing will go to waste. Worse still, the blacklisted transactions will still make
it into the longest chain.

In other words, a threat to blacklist certain transactions via punitive forking in the above manner is
not credible as far as the other miners are concerned. But there's a much more clever way to do it.
Instead of announcing that you're going to fork forever as soon as you see a transaction originating
from address X, you announce that you’ll attempt to fork if you see a block that has a transaction
from address X, but you will give up after a while. For example, you might announced that after k
blocks confirm the transaction from address X, you'll go back to the longest chain.

If you give up after one confirmation, your chance of orphaning the block with the transaction from X
is & . The reason for this is that you’ll have to find two consecutive blocks to get rid of the block with
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the transaction from address X before the rest of the network finds a block and @ ?is the chance that
you will get lucky twice.

A chance of @& ? might not seem very good. If you control 20% of the hash power, there’s only a 4%
chance of actually getting rid of that transaction that you don't want to see in the block chain. But it’s
better than it might seem as you might motivate other miners to join you. As long as you've been very
public about your plans, other miners know that if they include a transaction from address X, they
have an @ ? chance that the block that they find will end up being eliminated because of your
feather-forking attack. If they don't have any strong motivation to include that transaction from
address X and it doesn’t have a high transaction fee, the a2 chance of losing their mining reward
might be a much bigger incentive than collecting the transaction fee.

It emerges then that other miners may rationally decide to join you in enforcing the blacklist, and you
can therefore enforce a blacklist even if & <.5. The success of this attack is going to depend entirely
on how convincing you are to the other miners that you're definitely going to fork.

Transitioning to mining rewards dominated by transaction fees. As of 2015, transaction fees don't
matter that much since block rewards provide the vast majority — over 99% — of all the revenue that
miners are making. But every four years the block reward is scheduled to be halved, and eventually
the block reward will be low enough that transaction fees will be the main source of revenue for
miners. It's an open question exactly how miners will operate when transaction fees become their
main source of income. Are miners going to be more aggressive in enforcing minimum transaction
fees. Are they going to cooperate to enforce that?

Open problems. In summary, miners are free to implement any strategy that they want although in
practice we've seen very little behavior of anything other than the default strategy. There's no
complete model for miner behavior that says the default strategy is optimal. In this chapter we’ve
seen specific examples of deviations that may be profitable for miners with sufficient hash power.
Mining strategy may be an area in which the practice is ahead of the theory. Empirically, we've seen
that in a world where most miners do choose the default strategy, Bitcoin seems to work well. But
we're not sure if it works in theory yet.

We also can’t be sure that it will always continue to work well in practice. The facts on the ground are
going to change for Bitcoin. Miners are becoming more centralized and more professional, and the
network capacity is increasing. Besides, in the long run Bitcoin must contend with the transition from
fixed mining rewards to transaction fees. We don’t really know how this will play out and using
game-theoretic models to try to predict it is a very interesting current area of research.
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Chapter 6: Bitcoin and Anonymity

“Bitcoin is a secure and anonymous digital currency”
— WikiLeaks donations page
“Bitcoin won't hide you from the NSA's prying eyes”

— Wired UK

One of the most controversial things about Bitcoin is its supposed anonymity. First, is Bitcoin
anonymous? As you can see from the mutually contradictory quotes above, there’s some confusion
about this. Second, do we want a cryptocurrency that is truly anonymous? There are pros and cons of
anonymity, which leads to some basic questions: is having an anonymous cryptocurrency beneficial
for the stakeholders? Is it good for society? Is there a way to isolate the positive aspects of anonymity
while doing away with the negative parts?

These questions are hard because they depend in part on one’s ethical values. We won’t answer them
in this chapter, though we will examine arguments for and against anonymity. Mostly we’ll stick to
studying various technologies — some already present in Bitcoin and others that have been proposed
to be added to it — that aim to increase Bitcoin’s anonymity. We’ll also look at proposals for
alternative cryptocurrencies that have different anonymity properties from Bitcoin. These
technologies raise new questions: How well do they work? How difficult would they be to adopt?
What are the tradeoffs to be made in adopting them?

6.1 Anonymity Basics

Defining anonymity. Before we can properly discuss whether (or to what extent) Bitcoin is
anonymous, we need to define anonymity. We must understand what exactly we mean by anonymity,
and the relationship between anonymity and similar terms, such as privacy.

At a literal level, anonymous means “without a name.” When we try to apply this definition to Bitcoin,
there are two possible interpretations: interacting without using your real name, or interacting
without using any name at all. These two interpretations lead to very different conclusions as to
whether Bitcoin is anonymous. Bitcoin addresses are hashes of public keys. You don't need to use
your real name in order to interact with the system, but you do use your public key hash as your
identity. Thus, by the first interpretation, Bitcoin is anonymous as you do not use your real name.
However, by the second interpretation, it is not; the address that you use is a pseudo-identity. In the
language of computer science, this middle ground of using an identity that is not your real name is
called pseudonymity.
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Recall that you are free to create as many Bitcoin addresses as you like. With this in mind, you might
be wondering whether Bitcoin addresses really are pseudo-identities considering that you can create
as many of these pseudonyms as you like. As we’ll see, this still does not make Bitcoin anonymous.

In computer science, anonymity refers to pseudonymity together with unlinkability. Unlinkability is a
property that’s defined with respect to the capabilities of a specific adversary. Intuitively, unlinkability
means that if a user interacts with the system repeatedly, these different interactions should not be
able to be tied to each other from the point of view of the adversary in consideration.

Sidebar. The distinction between anonymity and mere pseudonymity is something that you might
be familiar with from a variety of other contexts. One good example is online forums. On a forum
like Reddit, you pick a long-term pseudonym and interact over a period of time with that
pseudonym. You could create multiple pseudonyms, or even a new one for every comment, but
that would be tedious and annoying and most people don’t do it. So interacting on Reddit is usually
pseudonymous but not quite anonymous. 4Chan, by contrast, is an online forum in which users
generally post anonymously — with no attribution at all.

Bitcoin is pseudonymous, but pseudonymity is not enough if your goal is to achieve privacy. Recall
that the block chain is public and anyone can look up all Bitcoin transactions that involved a given
address. If anyone is ever able to link your Bitcoin address to your real world identity, then all of your
transactions — past, present, and future — will have been linked back to your identity.

To make things worse, linking a Bitcoin address to a real-world identity is often easy. If you interact
with a Bitcoin business — be it an online wallet servics, exchange, or other merchant — they are
usually going to want your real life identity in order to let you transact with them. For example, an
exchange might require your credit card details, while a merchant will need your shipping address.

Or you might go to a coffee shop and pay for your coffee with bitcoins. Since you're physically present
in the store, the barista knows a lot about your identity even if they don't ask for your real name. Your
physical identity thus gets tied to one of your Bitcoin transactions, making all the other transactions
that involved that address linkable to you. This is clearly not anonymous.

Side channels. Even if a direct linkage doesn't happen, your pseudonymous profile can be
deanonymized due to side channels, or indirect leakages of information. For example, someone may
look at a profile of pseudonymous Bitcoin transactions and note at what times of day that user is
active. They can correlate this information with other publicly available information. Perhaps they’ll
notice that some Twitter user is active during roughly same time intervals, creating a link between the
pseudonymous Bitcoin profile and a real-world identity (or at least a Twitter identity). Clearly
pseudonymity does not guarantee privacy or anonymity. To achieve those, we require the stronger
property of unlinkability as well.
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Unlinkability. To understand unlinkability in the Bitcoin context more concretely, let’s enumerate
some key properties that are required for Bitcoin activity to be unlinkable:

1. It should be hard to link together different addresses of the same user.
2. It should be hard to link together different transactions made by the same user.
3. It should be hard to link the sender of a payment to its recipient.

The first two properties are intuitive, but the third one is a bit tricky. If you interpret “a payment” as a
Bitcoin transaction, then the third property is clearly false. Every transaction has inputs and outputs,
and these inputs and outputs are inevitably going to be in the block chain and publicly linked
together. However, what we mean by a payment is not a single Bitcoin transaction, but rather
anything that has the effect of transferring bitcoins from the sender to the recipient. It might involve a
roundabout series of transactions. What we want to ensure is that it’s not feasible to link the sender
and the ultimate recipient of the payment by looking at the block chain.

Anonymity set. Even under our broader definition of a payment, the third property seems hard to
achieve. Say you pay for a product that costs a certain number of bitcoins and you send that payment
through a circuitous route of transactions. Somebody looking at the block chain will still be able to
infer something from the fact that a certain number of bitcoins left one address and roughly the same
number of bitcoins (minus transaction fees, perhaps) ended up at some other address. Moreover,
despite the circuitous route, the initial sending and the ultimate receiving will happen in roughly the
same time period because the merchant will want to receive payment without too much of a delay.

Because of this difficulty, we usually don't try to achieve complete unlinkability among all possible
transactions or addresses in the system, but rather something more limited. Given a particular
adversary, the anonymity set of your transaction is the set of transactions which the adversary cannot
distinguish from your transaction. Even if the adversary knows you made a transaction, they can only
tell that it’s one of the transactions in the set, but not which one it is. We try to maximize the size of
the anonymity set — the set of other addresses or transactions amongst which we can hide.

Calculating the anonymity set is tricky. Since the anonymity set is defined with respect to a certain
adversary or set of adversaries, you must first concretely define what your adversary model is. You
have to reason carefully about what that adversary knows, what they don't know, and what is it that
we are trying to hide from the adversary — that is, what the adversary cannot know for the
transaction to be considered anonymous. There's no general formula for doing this. It requires
carefully analyzing each protocol and system on a case-by-case basis.

Taint analysis. In the Bitcoin community, people often carry out intuitive analyses of anonymity
services without rigorous definitions. Taint analysis is particularly popular: it’s a way of calculating
how “related” two addresses are. If bitcoins sent by an address S always end up at another address R,
whether directly or after passing through some intermediate addresses, then S and R will have a high
taint score. The formula accounts for transactions with multiple inputs and/or outputs and specifies
how to allocate taint.
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Unfortunately, taint analysis is not a good measure of Bitcoin anonymity. It implicitly assumes that the
adversary is using the same mechanical calculation to link pairs of addresses. A slightly cleverer
adversary may use other techniques such as looking at the timing of transactions or even exploit
idiosyncrasies of wallet software as we’ll see later in this chapter. So taint analysis might suggest that
you have a high degree of anonymity in a certain situation, but in fact you might not.

Why we need anonymity. Having seen what anonymity means, let’s answer some meta-questions
about anonymity before we go further: Why do people want anonymity? What are the ethical
implications of having an anonymous currency?

In block chain-based currencies, all transactions are recorded on the ledger, which means that they
are publicly and permanently traceable to the associated addresses. So the privacy of your Bitcoin
transactions can potentially be far worse than with traditional banking. If your real-world identity ever
gets linked to a Bitcoin address, then you have totally lost privacy for all transactions — past, present,
and future — associated with that address. Since the block chain is publicly available, literally anyone
might be able to carry out this type of deanonymization without you even realizing that you’ve been
identified.

With this in mind, we can identify two different motivations for having anonymous cryptocurrencies.
The first is simply to achieve the level of privacy that we are already used to from traditional banking,
and mitigate the deanonymization risk that the public block chain brings. The second is to go above
and beyond the privacy level of traditional banking and develop currencies that make it
technologically infeasible for anyone to track the participants.

Ethics of anonymity. There are many important (though often overlooked) reasons for anonymity that
we take for granted with traditional currencies. Most people are uncomfortable sharing their salaries
with their friends and coworkers. If individual’s addresses in the blockchain are easily identifiable
though and they receive their salary in Bitcoin, it would be quite easy to infer their salary by looking
for a large, regular monthly payment. Organizations also have important financial privacy concerns.
For example, if a video game console manufacturer were to be observed in the blockchain paying a
subcontractor which manufactures virtual reality glasses, this might tip off the public (and their
competitors) about a new product they are preparing to launch.

However, there is legitimate concern that truly anonymous cryptocurrencies can be used for money
laundering or other illegal activities. The good news is that while cryptocurrency transactions
themselves may be pseudonymous or anonymous, the interface between digital cash and fiat
currencies is not. In fact, these flows are highly regulated, as we’ll see in the next chapter. So
cryptocurrencies are no panacea for money laundering or other financial crimes.

Nevertheless one may ask: can't we design the technology in such a way that only the good uses of
anonymity are allowed and the bad uses are somehow prohibited? This is in fact a recurring plea to
computer security and privacy researchers. Unfortunately, it never turns out to be possible. The
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reason is that use cases that we classify as good or bad from a moral viewpoint turn out to be
technologically identical. In Bitcoin, it’s not clear how we could task miners with making moral
decisions about which transactions to include.

Our view is that the potential good that’s enabled by having anonymous cryptocurrencies warrant
their existence, and that we should separate the technical anonymity properties of the system from
the legal principles we apply when it comes to using the currency. It's not a completely satisfactory
solution, but it's perhaps the best way to achieve a favorable trade-off.

Sidebar: Tor. The moral dilemma of how to deal with a technology that has both good and bad uses
is by no means unique to Bitcoin. Another system whose anonymity is controversial is Tor, an
anonymous communication network.

On the one hand, Tor is used by normal people who want to protect themselves from being tracked
online. It's used by journalists, activists, and dissidents to speak freely online without fear of
repercussion from oppressive regimes. It's also used by law enforcement agents who want to
monitor suspects online without revealing their IP address (after all, ranges or blocks of IP
addresses assigned to different organizations, including law enforcement agencies, tend to be well
known). Clearly, Tor has many applications that we might morally approve of. However, it also has
clearly bad uses: it's used by operators of botnets to issue commands to the infected machines
under their control and it’s used to distribute child sexual abuse images.

Distinguishing between these uses at a technical level is essentially impossible. The Tor developers
and the Tor community have grappled extensively with this conundrum. Society at large has
grappled with it to some degree as well. We seem to have concluded that overall, it's better for the
world that the technology exists. In fact one of the main funding sources of the Tor project is the
U.S. State Department. They're interested in Tor because it enables free speech online for
dissidents in oppressive regimes. Meanwhile, law enforcement agencies seem to have grudgingly
accepted Tor’s existence, and have developed ways to work around it. The FBI has regularly
managed to bust websites on the “dark net” that distributed child sexual abuse images, even
though these sites hid behind Tor. Often this is because the operators tripped up. We must
remember that technology is only a tool and that perpetrators of crimes live in the real world,
where they may leave physical evidence or commit all-too-human errors when interacting with the
technology.

Anonymization vs. decentralization. We'll see a recurring theme throughout this chapter that the
design criteria of anonymization and decentralization are often in conflict with one another. If you
recall Chaum’s ecash from the preface, it achieved perfect anonymity in a sense, but through an
interactive blind-signature protocol with a central authority, a bank. As you can imagine, such
protocols are very difficult to decentralize. Secondly, if we decentralize, then we must keep some sort
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of mechanism to trace transactions and prevent double spending. This public traceability of
transactions is a threat to anonymity.

Later in this chapter, we’ll see Zerocoin and Zerocash, anonymous decentralized cryptocurrencies that
have some similarities to Chaum’s ecash, but they have to tackle thorny cryptographic challenges
because of these two limitations.

6.2 How to De-anonymize Bitcoin

We've said several times that Bitcoin is only pseudonymous, so all of your transactions or addresses
could potentially be linked together. Let’s take a closer look at how that might actually happen.

Figure 6.1 shows a snippet of the Wikileaks donation page (including the quote at the beginning of the
chapter). Notice the refresh button next to the donation address. As you might expect, clicking the
button will replace the donation address with an entirely new, freshly generated address. Similarly, if
you refresh the page or close it and visit it later, it will have another address, never previously seen.
That’s because Wikileaks wants to make sure that each donation they receive goes to a new public
key that they create just for that purpose. Wikileaks is taking maximal advantage of the ability to
create new pseudonymes. This is in fact the best practice for anonymity used by Bitcoin wallets.

Bitcoin is a secure and anonymous digital currency. Bitcoins cannot be easily tracked back to
you, and are safer and faster alternative to other donation methods. You can send BTC to the
following address:

NY
13DFamCvSxG8EGleVyXzdpfagxyooifswYx ")

Figure 6.1: Snippet from Wikileaks donation page. Notice the refresh icon next to the Bitcoin
address. Wikileaks follows the Bitcoin best practice of generating a new receiving address for every
donation.

At first you might think that these different addresses must be unlinkable. Wikileaks receives each
donation separately, and presumably they can also spend each of those donations separately. But
things quickly break down.

Linking. Suppose Alice wants to buy a teapot that costs 8 bitcoins (more likely 8 centi-bitcoins, at 2015
exchange rates). Suppose, further, that her bitcoins are in three separate unspent outputs at different
addresses whose amounts are 3, 5, and 6 bitcoins respectively. Alice doesn't actually have an address
with 8 bitcoins sitting in it, so she must combine two of her outputs as inputs into a single transaction
that she pays to the store.
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But this reveals something. The transaction gets recorded permanently in the block chain, and anyone
who sees it can infer that the two inputs to the transaction are most likely under the control of the
same user. In other words, shared spending is evidence of joint control of the different input
addresses. There could be exceptions, of course. Perhaps Alice and Bob are roommates and agree to
jointly purchase the teapot by each supplying one transaction input. But by and large, joint inputs
imply joint control.

e B
€. 2
' Single

transaction

6

Figure 6.2 : To pay for the teapot, Alice has to create a single transaction having inputs that are at two
different address. In doing so, Alice reveals that these two addresses are controlled by a single entity.

But it doesn't stop there. The adversary can repeat this process and transitively link an entire cluster
of transactions as belonging to a single entity. If another address is linked to either one of Alice’s
addresses in this manner, then we know that all three addresses belong to the same entity, and we
can use this observation to cluster addresses. In general, if an output at a new address is spent
together with one from any of the addresses in the cluster, then this new address can also be added
to the cluster.

Later in this chapter we’ll study an anonymity technique called CoinJoin that works by violating this
assumption. But for now, if you assume that people are using regular Bitcoin wallet software without
any special anonymity techniques, then this clustering tends to be pretty robust. We haven't yet seen
how to link these clusters to real-world identities, but we’ll get to that shortly.

Sidebar: Change address randomization. An early version of the bitcoin-qt library had a bug which
always put the change address as the first output in a transaction with two outputs. This meant that
it was trivial to identify the change address in many transactions. This bug was fixed in 2012 but
highlights an important point: wallet software has an important role to play in protecting
anonymity. If you’re developing wallet software, there are many pitfalls you should be aware of; in
particular, you should always choose the position of the change address at random to avoid giving
too much away to the adversary!
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Going back to our example, suppose the price of the teapot has gone up from 8 bitcoins to 8.5
bitcoins. Alice can no longer find a set of unspent outputs that she can combine to produce the exact
change needed for the teapot. Instead, Alice exploits the fact that transactions can have multiple
outputs, as shown in Figure 6.3. One of the outputs is the store’s payment address and the other is a
“change” address owned by herself.

Now consider this transaction from the viewpoint of an adversary. They can deduce that the two
input addresses belong to the same user. They might further suspect that one of the output addresses
also belongs to that same user, but has no way to know for sure which one that is. The fact that the
0.5 output is smaller doesn’t mean that it’s the change address. Alice might have 10,000 bitcoins
sitting in a transaction, and she might spend 8.5 bitcoins on the teapot and send the remaining
9,991.5 bitcoins back to herself. In that scenario the bigger output is in fact the change address.

Figure 6.3: Change address. To pay for the teapot, Alice has to create a transaction with one output
that goes to the merchant and another output that sends change back to herself.

A somewhat better guess is that if the teapot had cost only 0.5 bitcoins, then Alice wouldn’t have had
to create a transaction with two different inputs, since either the 3 bitcoin input or the 6 bitcoin input
would have been sufficient by itself. But the effectiveness of this type of heuristic depends entirely on
the implementation details of commonly used wallet software. There’s nothing preventing wallets (or
users) from combining transactions even when not strictly necessary.

Idioms of use. Implementation details of this sort are called “idioms of use”. In 2013, a group of
researchers found an idiom of use that was true of most wallet software, and led to a powerful
heuristic for identifying change addresses. Specifically, they found that wallets typically generate a
fresh address whenever a change address is required. Because of this idiom of use, change addresses
are generally addresses that have never before appeared in the block chain. Non-change outputs, on
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the other hand, are often not new addresses and may have appeared previously in the block chain. An
adversary can use this knowledge to distinguish change addresses and link them with the input
addresses.

Exploiting idioms of use can be error prone. The fact that change addresses are fresh addresses just
happens to be a feature of wallet software. It was true in 2013 when the researchers tested it. Maybe
it’s still true, but maybe it’s not. Users may choose to override this default behavior. Most
importantly, an adversary who is aware of this technique can easily evade it. Even in 2013, the
researchers found that it produced a lot of false positives, in which they ended up clustering together
addresses that didn’t actually belong to the same entity. They reported that they needed significant
manual oversight and intervention to prune the false positives.

Figure 6.4: Clustering of addresses. In the 2013 paper A Fistful of Bitcoins: Characterizing Payments
Among Men with No Names, researchers combined the shared-spending heuristic and the
fresh-change-address heuristic to cluster Bitcoin addresses. The sizes of these circles represent the
quantity of money flowing into those clusters, and each edge represents a transaction.

Attaching real-world identities to clusters. In Figure 6.4. we see how Meiklejohn et al. clustered
Bitcoin addresses using basic idioms of use as heuristics. But the graph is not labeled — we haven’t
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yet attached identities to the clusters.

We might be able to make some educated guesses based on what we know about the Bitcoin
economy. Back in 2013, Mt. Gox was the largest Bitcoin exchange, so we might guess that the big
purple circle represents addresses controlled by them. We might also notice that the brown cluster on
the left has a tiny volume in Bitcoins despite having the largest number of transactions. This fits the
pattern of the gambling service Satoshi Dice, which is a popular game in whic you send a tiny amount
of bitcoins as a wager. Overall though, this isn’t a great way to identify clusters. It requires knowledge
and guesswork and will only work for the most prominent services.

Tagging by transacting. What about just visiting the website for each exchange or merchant and
looking up the address they advertise for receiving bitcoins? That doesn't quite work, however,
because most services will advertise a new address for every transaction and the address shown to
you is not yet in the block chain. There’s no point in waiting, either, because that address will never be
shown to anyone else.

The only way to reliably infer addresses is to actually transact with that service provider — depositing
bitcoins, purchasing an item, and so on. When you send bitcoins to or receive bitcoins from the
service provider, you will now know one of their addresses, which will soon end up in the block chain
(and in one of the clusters). You can then tag that entire cluster with the service provider’s identity.

This is is exactly what the Fistful of Bitcoins researchers (and others since) have done. They bought a
variety of things, joined mining pools, used Bitcoin exchanges, wallet services, and gambling sites, and
interacted in a variety of other ways with service providers, compromising 344 transactions in all.

In Figure 6.5, we again show the clusters of Figure 6.4, but this times with the labels attached. While
our guesses about Mt. gox and Satoshi Dice were correct, the researchers were able to identify
numerous other service providers that would have been hard to identify without transacting with
them.
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Figure 6.5. Labeled clusters. By transacting with various Bitcoin service providers, Meiklejohn et al.
were able to attach real world identities to their clusters.

Identifying individuals. The next question is: can we do the same thing for individuals? That is, can we
connect little clusters corresponding to individuals to their real-life identities?

Directly transacting. Anyone who transacts with an individual — an online or offline merchant, an
exchange, or a friend who splits a dinner bill using Bitcoin — knows at least one address belonging to
them.

Via service providers. In the course of using Bitcoin over a few months or years, most users will end up
interacting with an exchange or another centralized service provider. These service typically providers
ask users for their identities — often they’re legally required to, as we’ll see in the next chapter. If law
enforcement wants to identify a user, they can turn to these service providers.

Carelessness. People often post their Bitcoin addresses in public forums. A common reason is to
request donations. When someone does this it creates a link between their identity and one of their
addresses. If they don’t use the anonymity services that we’ll look at in the following sections, they
risk having all their transactions de-anonymized.

175



Things get worse over time. History shows that deanonymization algorithms usually improve over
time when the data is publicly available as more researchers study the problem and identify new
attack techniques. Besides, more auxiliary information becomes available that attackers can use to
attach identities to clusters. This is something to worry about if you care about privacy.

The deanonymization techniques we’ve examined so far are all based on analyzing the graphs of
transactions in the block chain. They are collectively known as transaction graph analysis.

Network-layer deanonymization. There’s a completely different way in which users can get
deanonymized that does not rely on the transaction graph. Recall that in order to post a transaction
to the block chain, one typically broadcasts it to Bitcoin’s peer-to-peer network where messages are
sent around that don't necessarily get permanently recorded in the block chain.

In networking terminology, the block chain is called the application layer and the peer-to-peer
network is the network layer. Network-layer deanonymization was first pointed out by Dan Kaminsky
at the 2011 Black Hat conference. He noticed that when a node creates a transaction, it connects to

many nodes at once and broadcasts the transaction. If sufficiently many nodes on the network collude

with each other (or are run by the same adversary), they could figure out the first node to broadcast
any transaction. Presumably, that would be a node that’s run by the user who created the
transaction. The adversary could then link the transaction to the node’s IP address. An IP address is
close to a real-world identity; there are many ways to try to unmask the person behind an IP address.
Thus, network-layer de-anonymization is a serious problem for privacy.

|

Figure 6.6. Network level deanonymization. As Dan Kaminsky pointed out in his 2011 Black Hat talk,
“the first node to inform you of a transaction is probably the source of it.” This heuristic is amplified
when multiple nodes cooperate and identify the same source.
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Luckily, this is a problem of communications anonymity, which has already been the subject of
considerable research. As we saw earlier in Section 6.1, there’s a widely deployed system called Tor
that you can use for communicating anonymously.

There are a couple of caveats to using Tor as a network-layer anonymity solution for Bitcoin. First,
there can be subtle interactions between the Tor protocol and any protocol that’s overlaid on top of
it, resulting in new ways to breach anonymity. Indeed, researchers have found potential security
problems with using Bitcoin-over-Tor, so this must be done with extreme caution. Second, there
might be other anonymous communication technologies better suited to use in Bitcoin. Tor is
intended for “low-latency” activities such as web browsing where you don't want to sit around
waiting for too long. It makes some compromises to achieve anonymity with low latency. Bitcoin, by
comparison, is a high-latency system because it takes a while for transactions to get confirmed in the
block chain. In theory, at least, you might want to use an alternative anonymity technique such as a
mix net, but for the moment, Tor has the advantage of being an actual system that has a large user
base and whose security has been intensely studied.

So far, we've seen that different addresses might be linked together by transaction graph analysis and
that they might also be linkable to a real-world identity. We've also seen that a transaction or address
could get linked to an IP address based on the peer-to-peer network. The latter problem is relatively
easy to solve, even if it can’t be considered completely solved yet. The former problem is much
trickier, and we're going to spend the rest of this chapter talking about ways to solve it.

6.3 Mixing

There are several mechanisms that can make transaction graph analysis less effective. One such
technique is mixing, and the intuition behind it is very simple: if you want anonymity, use an
intermediary. This principle is not specific to Bitcoin and is useful in many situations where anonymity
is a goal. Mixing is illustrated in Figure 6.7.
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Figure 6.7 : Mixing. Users send coins to an intermediary and get back coins that were deposited by
other users. This makes it harder to trace a user’s coins on the block chain.

Online wallets as mixes. If you recall our discussion of online wallets, they may seem to be suitable as
intermediaries. Online wallets are services where you can store your bitcoins online and withdraw
them at some later date. Typically the coins that you withdraw won’t be the same as the coins you
deposited. Do online wallets provide effective mixing, then?

Online wallets do provide a measure of unlinkability which can foil attempts at transaction graph
analysis — in one case, prominent researchers had to retract a claim that had received a lot of
publicity because the link they thought they’d found was a spurious one caused by an online wallet.

On the other hand, there are several important limits to using online wallets for mixing. First, most
online wallets don’t actually promise to mix users’ funds; instead, they do it because it simplifies the
engineering. You have no guarantee that they won’t change their behavior. Second, even if they do
mix funds, they will almost certainly maintain records internally that will allow them to link your
deposit to your withdrawal. This is a prudent choice for wallet services for reasons of both security
and legal compliance. So if your threat model includes the possibility of the service provider itself
tracking you, or getting hacked, or being compelled to hand over their records, you’re back to square
one. Third, in addition to keeping logs internally, reputable and regulated services will also require
and record your identity (we'll discuss regulation in more detail in the next chapter). You won’t be
able to simply create an account with a username and password. So in one sense it leaves you worse
off than not using the wallet service. That’s why we called out the tension between centralization and
anonymity in the previous section.

The anonymity provided by online wallets is similar to that provided by the traditional banking
system. There are centralized intermediaries that know a lot about our transactions, but from the
point of view of a stranger with no privileged information we have a reasonable degree of privacy. But
as we discussed, the public nature of the block chain means that if something goes wrong (say, a
wallet or exchange service gets hacked and records are exposed), the privacy risk is worse than with
the traditional system. Besides, most people who turn to Bitcoin for anonymity tend to do so because
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they are unhappy with anonymity properties of the traditional system and want a better (or a
different kind of) anonymity guarantee. These are the motivations behind dedicated mixing services.

Dedicated mixing services. In contrast to online wallets, dedicated mixes promise not to keep records,
nor do they require your identity. You don’t even need a username or other pseudonym to interact
with the mix. You send your bitcoins to an address provided by the mix, and you tell the mix a
destination address to send bitcoins to. Hopefully the mix will soon send you (other) bitcoins at
address you specified. It’'s essentially a swap.

While it’s good that dedicated mixes promise not to keep records, you still have to trust them to keep
that promise. And you have to trust that they’ll send you back your coins at all. Since mixes aren’t a
place where you store your bitcoins, unlike wallets, you’ll want your coins back relatively quickly,
which means that the pool of other coins that your deposit will be mixed with is much smaller —
those that were deposited at roughly the same time.

Sidebar: Terminology. In this book, we’ll use the term mix to refer to a dedicated mixing service. An
equivalent term that some people prefer is mixer.

You might also encounter the term laundry. We don’t like this term, because it needlessly attaches
a moral judgement to something that's a purely technical concept. As we've seen, there are very
good reasons why you might want to protect your privacy in Bitcoin and use mixes for everyday
privacy. Of course, we must also acknowledge the bad uses, but using the term laundry promotes
the negative connotation, as it implies that your coins are ‘dirty’ and you need to clean them.

There is also the term tumbler. It isn’t clear if this refers to the mixing action of tumbling drums or
their cleaning effect (on gemstones and such). Regardless, we’ll stick to the term ‘mix’.

A group of researchers, including four of the five authors of this textbook, studied mixes and proposed
a set of principles for improving the way that mixes operate, both in terms of increasing anonymity
and in terms of the security of entrusting your coins to the mix. We will go through each of these
guidelines.

Use a series of mixes. The first principle is to use a series of mixes, one after the other, instead of just
a single mix. This is a well-known and well-established principle — for example, Tor, as we'll see in a
bit, uses a series of 3 routers for anonymous communication. This reduces your reliance on the
trustworthiness of any single mix. As long as any one of the mixes in the series keeps its promise and
deletes its records, you have reason to expect that no one will be able to link your first input to the
ultimate output that you receive.
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Figure 6.8. Series of mixes. We begin with a user who has a coin or input address that we assume the
adversary has managed to link to them. The user sends the coin through various mixes, each time
providing a freshly generated output address to the mix. Provided that at least one of these mixes
destroys its records of the input to output address mapping, and there are no side-channel leaks of
information, an adversary won’t be able to link the user’s original coin to their final one.

Uniform transactions. If mix transactions by different users had different quantities of bitcoins, then
mixing wouldn’t be very effective. Since the value going into the mix and coming out of a mix would
have to be preserved, it will enable linking a user’s coins as they flow through the mix, or at least
greatly diminish the size of the anonymity set.

Instead, we want mix transactions to be uniform in value so that linkability is minimized. All mixes
should agree on a standard chunk size, a fixed value that incoming mix transactions must have. This
would increase the anonymity set as all transactions going through any mix would look the same and
would not be distinguishable based on their value. Moreover, having a uniform size across all mixes
would make it easy to use a series of mixes without having to split or merge transactions.

In practice, it might be difficult to agree on a single chunk size that works for all users. If we pick it to
be too large, users wanting to mix a small amount of money won’t be able to. But if we pick it to be
too small, users wanting to mix a large amount of money will need to divide it into a huge number of
chunks which might be inefficient and costly. Multiple standard chunk sizes would improe
performance, but also split the anonymity sets by chunk size. Perhaps a series of two or three
increasing chunk sizes will provide a reasonable tradeoff between efficiency and privacy.

Client side should be automated. In addition to trying to link coins based on transaction values, a
clever adversary can attempt various other ways to de-anonymize, for example, by observing the
timing of transactions. These attacks can be avoided, but the precautions necessary are too complex
and cumbersome for human users. Instead, the client-side functionality for interacting with mixes
should be automated and built into privacy-friendly wallet software.
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Fees should be all-or-nothing. Mixes are businesses and expect to get paid. One way for a mix to
charge fees is to take a cut of each transaction that users send in. But this is problematic for
anonymity, because mix transactions can no longer be in standard chunk sizes. (If users try to split and
merge their slightly-smaller chunks back to the original chunk size, it introduces serious and
hard-to-analyze anonymity risks because of the new linkages between coins that are introduced.)

Don’t confuse mixing fees with transaction fees, which are collected by miners. Mixing fees are
separate from and in addition to such fees.

To avoid this problem, mixing fees should be all-or-nothing, and applied probabilistically. In other
words, the mix should swallow the whole chunk with a small probability or return it in its entirety. For
example, if the mix wants to charge a 0.1% mixing fee, then one out every 1,000 times the mix should
swallow the entire chunk, whereas 999 times out of 1,000 the mix should return the entire chunk
without taking any mixing fee.

This is a tricky to accomplish. The mix must make a probabilistic decision and convince the user that it
didn’t cheat: that it didn’t bias its random number generator so that it has (say) a 1% probability of
retaining a chunk as a fee, instead of 0.1%. Cryptography provides a way to do this, and we’ll refer you
to the Mixcoin paper in the Further Reading section for the details. The paper also talks about various
ways in which mixes can improve their trustworthiness.

Mixing in practice. As of 2015, there isn’t a functioning mix ecosystem. There are many mix services
out there, but they have low volumes and therefore small anonymity sets. Worse, many mixes have
been reported to steal bitcoins. Perhaps the difficulty of “bootstrapping” such an ecosystem is one
reason why it has never gotten going. Given the dodgy reputation of mixes, not many people will
want to use them, resulting in low transaction volumes and hence poor anonymity. There’s an old
saying that anonymity loves company. That is, the more people using an anonymity service, the better
anonymity it can provide. Furthermore, in the absence of much money to be made from providing the
advertised services, mix operators might be tempted to steal funds instead, perpetuating the cycle of
untrustworthy mixes.

Today’s mixes don’t follow any of the principles we laid out. Each mix operates independently and
typically provides a web interface,with which the user interacts manually to specify the receiving
address and any other necessary parameters. The user gets to choose the amount that they would
like to mix. The mix will take a cut of every transaction as a mixing fee and send the rest to the
destination address.

We think it’s necessary for mixes (and wallet software) to move to the model we presented in order
to achieve strong anonymity, resist clever attacks, provide a usable interface, and attract high
volumes. But it remains to be seen if a robust mix ecosystem will ever evolve.
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6.4 Decentralized Mixing

Decentralized mixing is the idea of getting rid of mixing services and replacing them with a
peer-to-peer protocol by which a group of users can mix their coins. As you can imagine, this
approach is better philosophically aligned with Bitcoin.

Decentralization also has more practical advantages. First, it doesn’t have the bootstrapping problem:
users don’t have to wait for reputable centralized mixes to come into existence. Second, theft is
impossible in decentralized mixing; the protocol ensures that when you put in bitcoins to be mixed,
you’ll get bitcoins back of equal value. Because of this, even though some central coordination turns
out to be helpful in decentralized mixing, it’s easier for someone to set up such a service because they
don’t have to convince users that they’re trustworthy. Finally, in some ways decentralized mixing can
provide better anonymity.

Coinjoin. The main proposal for decentralized mixing is called Coinjoin. In this protocol, different users
jointly create a single Bitcoin transaction that combines all of their inputs. The key technical principle
that enables Coinjoin to work is this: when a transaction has multiple inputs coming from different
addresses, the signatures corresponding to each input are separate from and independent of each
other. So these different addresses could be controlled by different people. You don’t need one party
to collect all of the private keys.

Single

@
“ transaction
DN ’

Figure 6.9. A Coinjoin transaction.

This allows a group of users to mix their coins with a single transaction. Each user supplies an input
and output address and together they form a transaction with these addresses. The order of the input
and output addresses is randomized so an outsider will be unable to determine the mapping between
inputs and outputs. Participants check that their output address is included in the transaction and that
it receives the same amount of Bitcoin that they are inputting (minus any transaction fees). Once they
have confirmed this, they sign the transaction.
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Somebody looking at this transaction on the block chain — even if they know that it is a Coinjoin
transaction — will be unable to determine the mapping between the inputs and outputs. From an
outsider’s perspective the coins have been mixed, which is the essence of Coinjoin.

What we’ve described so far is just one round of mixing. But the principles that we discussed before
still apply. You’d want to repeat this process with (presumably) different groups of users. You’d also
want to make sure that the chunk sizes are standardized so that you don’t introduce any side
channels.

Let’s now delve into the details of Coinjoin, which can be broken into 5 steps:

Find peers who want to mix

Exchange input/output addresses

Construct transaction

Send the transaction around. Each peer signs after verifying their output is present.
Broadcast the transaction

uhwnNE

Finding peers. First, a group of peers who all want to mix need to find each other. This can be
facilitated by servers acting as “watering-holes,” allowing users to connect and grouping together.
Unlike centralized mixes, these servers are not in a position to steal users’ funds or compromise
anonymity.

Exchanging addresses. Once a peer group has formed, the peers must exchange their input and
output addresses with each other. It’s important for participants to exchange these addresses in such
a way that even the other members of the peer group do not know the mapping between input and
output addresses. Otherwise, even if you execute a coinjoin transaction with a supposedly random set
of peers, an adversary might be able to weasel their way into the group and note the mapping of
inputs to outputs. To swap addresses in an unlinkable way, we need an anonymous communication
protocol. We could use the Tor network, which we looked at earlier, or a special-purpose anonymous
routing protocol called a decryption mix-net.

Collecting signatures and denial of service. Once the inputs and outputs have been communicated,
one of these users — it doesn't matter who — will then construct the transaction corresponding to
these inputs and outputs. The unsigned transaction will then be passed around; each peer will verify
that its input and output address are included correctly, and sign.

If all peers follow the protocol, this system works well. Any peer can assemble the transaction and any
peer can broadcast the transaction to the network. Two of them could even broadcast it
independently; it will be published only once to the block chain, of course. But if one or more of the
peers wants to be disruptive, it’s easy for them to launch a denial-of-service attack, preventing the
protocol from completing.
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In particular, a peer could participate in the first phase of the protocol, providing its input and output
addresses, but then refuse to sign in the second phase. Alternately, after signing the transaction, a
disruptive peer can try to take the input that it provided to its peers and spend it in some other
transaction instead. If the alternate transaction wins the race on the network, it will be confirmed first
and the Coinjoin transaction will be rejected as a double spend.

There have been several proposals to prevent denial of service in Coinjoin. One is to impose a cost to
participate in the protocol, either via a proof of work (analogous to mining), or by a proof of burn, a
technique to provably destroy a small quantity of bitcoins that you own, which we studied in Chapter
3. Alternatively, there are cryptographic ways to identify a non-compliant participant and kick them
out of the group. For details, see the Further Reading section.

High-level flows. We mentioned side channels earlier. We’ll now take a closer look at how tricky side
channels can be. Let's say Alice receives a very specific amount of bitcoins, say 43.12312 BTC, at a
particular address on a weekly basis, perhaps as her salary. Suppose further that she has a habit of
automatically and immediately transferring 5% of that amount to her retirement account, which is
another Bitcoin address. We call this transfer pattern a high-level flow. No mixing strategy can
effectively hide the fact that there’s a relationship between the two addresses in this scenario. Think
about the patterns that will be visible on the block chain: the specific amounts and timing are
extraordinarily unlikely to occur by chance.

Figure 6.10: Merge avoidance. Alice wishes to buy a teapot for 8 BTC. The store gives her two
addresses and she pays 5 to one and 3 to the other, matching her available input funds. This prevents
revealing that these two addresses were both belong to Alice.

One technique that can help regain unlinkability in the presence of high-level flows is called merge
avoidance, proposed by Bitcoin developer Mike Hearn. Generally, to make a payment, a user creates
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a single transaction that combines as many coins as necessary in order to pay the entire amount to a
single address. What if they could avoid the need to merge and consequently link all of their inputs?
The merge avoidance protocol enables this by allowing the receiver of a payment to provide multiple
output addresses — as many as necessary. The sender and receiver agree upon a set of
denominations to break up the payment into, and carry it out using multiple transactions, as shown in
Figure 6.10.

Assuming the store eventually combines these two payments with many other inputs from other
payments it has received, it will no longer be obvious that these two addresses were associated with
each other. The store should avoid re-combining these two inputs as soon as it receives them or else
it will still be clear they were made by the same entity. Also, Alice might want to avoid sending the
two payments at the exact same time, which might similarly reveal this information.

Generally though, merge avoidance can help mitigate the problem of high-level flows: an adversary
might not be able to discern a flow if it is broken up into many smaller flows that aren’t linked to each
other. It also defeats address clustering techniques that rely on coins being spent jointly in a single
transaction.

6.5 Zerocoin and Zerocash

No cryptocurrency anonymity solutions have caused as much excitement as Zerocoin and its
successor Zerocash. That’s both because of the ingenious cryptography that they employ and because
of the powerful anonymity that they promise. Whereas all of the anonymity-enhancing technologies
that we have seen so far add anonymity on top of the core protocol, Zerocoin and Zerocash
incorporate anonymity at the protocol level. We'll present a high-level view of the protocol here and
necessarily simplify some details, but you can find references to the original papers in the Further
Reading section.

Compatibility. As we’'ll see, the strong anonymity guarantees of Zerocoin and Zerocash come at a
cost: unlike centralized mixing and Coinjoin, these protocols are not compatible with Bitcoin as it
stands today. It is technically possible to deploy Zerocoin with a soft fork to Bitcoin, but the practical
difficulties are serious enough to make this infeasible. With Zerocash, a fork is not even possible, and
an altcoin is the only option.

Cryptographic guarantees. Zerocoin and Zerocash incorporate protocol-level mixing, and the
anonymity properties come with cryptographic guarantees. These guarantees are qualitatively better
than those of the other mixing technologies that we have discussed. You don't need to trust anybody
— mixes, peers, or intermediaries of any kind, or even miners and the consensus protocol — to
ensure your privacy. The promise of anonymity relies only on the adversary’s computational limits, as
with most cryptographic guarantees.

185



Zerocoin. To explain Zerocoin, we'll first introduce the concept of Basecoin. Basecoin is a Bitcoin-like
altcoin, and Zerocoin is an extension of this altcoin. The key feature that provides anonymity is that
you can convert basecoins into zerocoins and back again, and when you do that, it breaks the link
between the original basecoin and the new basecoin. In this system, Basecoin is the currency that you
transact in, and Zerocoin just provides a mechanism to trade your basecoins in for new ones that are
unlinkable to the old ones.

You can view each zerocoin you own as a token which you can use to prove that you owned a
basecoin and made it unspendable. The proof does not reveal which basecoin you owned, merely that
you did own a basecoin. You can later redeem this proof for a new basecoin by presenting this proof
to the miners. An analogy is entering a casino and exchanging your cash for poker chips. These serve
as proof that you deposited some cash, which you can later exchange for different cash of the same
value on exiting the casino. Of course, unlike poker chips, you can’t actually do anything with a
zerocoin except hold on to it and later redeem it for a basecoin.

To make this work in a cryptocurrency, we implement these proofs cryptographically. We need to
make sure that each proof can be used only once to redeem a basecoin. Otherwise you’d be able to
earn basecoins for free by turning a basecoin into a zerocoin and then redeeming it more than once.

Zero-knowledge proofs. The key cryptographic tool we’ll use is a zero-knowledge proof, which is a
way for somebody to prove a (mathematical) statement without revealing any other information that
leads to that statement being true. For example, suppose you’ve done a lot of work to solve a hash
puzzle, and you want to convince someone of this. In other words, you want to prove the statement

I know xsuchthat H(x || <{other known inputs) ) < ({target) .

You could, of course, do this by revealing x. But a zero-knowledge proof allows you to do this in such a
way that the other person is no wiser about the value of x after seeing the proof than they were
before.

You can also prove a statement such as “I know x such that H(x) belongs to the following set: {...}".
The proof would reveal nothing about x, nor about which element of the set equals H(x). Zerocoin
crucially relies on zero-knowledge proofs and in fact the statements proved in Zerocoin are very
similar to this latter example. In this book, we’ll treat zero-knowledge proofs as black-boxes. We’'ll
present the properties achieved by zero-knowledge proofs and show where they are necessary in the
protocol, but we will not delve into the technical details of how these proofs are implemented.
Zero-knowledge proofs are a cornerstone of modern cryptography and form the basis of many
protocols. Once again, we refer the motivated reader to the Further Reading section for more detailed
treatment.

Minting Zerocoins. Zerocoins come into existence by minting, and anybody can mint a zerocoin. They
come in standard denominations. For simplicity, we’ll assume that there is only one denomination
worth 1.0 zerocoins, and that each zerocoin is worth one basecoin. While anyone can mint a Zerocoin,
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just minting one doesn’t automatically give it any value — you can't get free money. It acquires value
only when you put it onto the block chain, and doing that will require giving up one basecoin.

To mint a Zerocoin, you use a cryptographic commitment. Recall from Chapter 1 that a commitment
scheme is the cryptographic analog of sealing a value in an envelope and putting it on a table in
everyone’s view.

Figure 6.11: Committing to a serial number. The real world analog of a cryptographic commitment is
sealing a value inside an envelope.

Minting a zerocoin is done in three steps:
1. Generate serial number S and a random secret r
2. Compute Commit(S, r), the commitment to the serial number
3. Publish the commitment onto the block chain as shown in Figure 6.12. This burns a basecoin,
making it unspendable, and creates a Zerocoin. Keep S and r secret for now.

_ signed by A
< < it | | Commit(S, r) H(')

Figure 6.12: Putting a zerocoin on the block chain. To put a zerocoin on the blockchain, you create a
special ‘mint’ transaction whose output ‘address’ is the cryptographic commitment of the zerocoin’s
serial number. The input of the mint transaction is a basecoin, which has now been spent in creating
the zerocoin. The transaction does not reveal the serial number.

To spend a zerocoin and redeem a new basecoin, you need to prove that you previously minted a
zerocoin. You could do this by opening your previous commitment, that is, revealing S and r. But this

makes the link between your old basecoin and your new basecoin apparent. How can we break the
link?
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This is where the zero-knowledge proof comes in. At any point, there will be many commitments on
the block chain — let’s call them c,,c,,...,c,.
Here are the steps that go into spending a zerocoin with serial number S to redeem a new basecoin:
e Create a special “spend” transaction that contains S, along with a zero-knowledge proof of the
statement:
“I know r such that Commit(s, r) is in the set {c,c,....c,}".
o Miners will verify your zero-knowledge proof which establishes your ability to open one of the
zerocoin commitments on the block chain, without actually opening it.
o Miners will also check that the serial number S has never been used in any previous spend
transaction (since that would be a double-spend).
e The output of your spend transaction will now act as a new basecoin. For the output address,
you should use an address that you own.

v
Mint | Serial: (S)
- - - Spend | Proof: (..
PR Pay to: (pk)

Figure 6.13: Spending a zerocoin. The spend transaction reveals the serial number S committed by
the earlier mint transaction, along with a zero-knowledge proof that S corresponds to some earlier
mint transaction. Unlike a mint transaction (or a normal Bitcoin/basecoin transaction), the spend
transaction has no inputs, and hence no signature. Instead the zero-knowledge proof serves to
establish its validity.

Once you spend a zerocoin, the serial number becomes public, and you will never be able to redeem
this serial number again. And since there is only one serial number for each zerocoin, it means that
each zerocoin can only be spent once, exactly as we required for security.

Anonymity. Observe that r is kept secret throughout; neither the mint nor the spend transaction
reveals it. That means nobody knows which serial number corresponds to which zerocoin. This is the
key concept behind Zerocoin’s anonymity. There is no link on the block chain between the mint
transaction that committed a serial number S and the spend transaction that later revealed S to
redeem a basecoin. This is a magical-sounding property that is possible through cryptography but we
wouldn't get in a physical, envelope-based system. It’s as if there are a bunch of sealed envelopes on
a table with different serial numbers, and you can prove that a particular serial number is one of
them, without having to reveal which one and without having to open any envelopes.
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Efficiency. Recall the statement that’s proved in a spend transaction:

“I know r such that Commit(s, r) is in the set {c,,c,,....c,}".
This sounds like it would be horribly inefficient to implement, because the size of the zero-knowledge
proofs would grow linearly as n increases, which is the number of zerocoins that have ever been
minted. Remarkably, Zerocoin manages to make the size of these proofs only logarithmic in n. Note
that even though the statement to be proved has a linear length, it doesn’t need to be included along
with the proof. The statement is implicit; it can be inferred by the miners since they know the set of
all zerocoins on the block chain. The proof itself can be much shorter. Nevertheless, compared to
Bitcoin, Zerocoin still adds quite a sizable overhead, with proofs about 50 kB in size.

Trusted setup. One of the cryptographic tools used in building Zerocoin (RSA accumulators) which
require a one-time trusted setup. Specifically, a trusted party needs to choose two large primes p and
g and publish N=p-q which is a parameter that everybody will use for the lifetime of the system. Think
of N like a public key, except for all of Zerocoin as opposed to one particular entity. As long as the
trusted party destroys any record of p and g, the system is believed to be secure. In particular, this
rests on the widely-believed assumption that it’s infeasible to factoring a number that’s a product of
two large primes. But if anyone knows the secret factors p and g (called the “trapdoor”), then they’d
be able to create new zerocoins for themselves without being detected. So these secret inputs must
be used once in generating the public parameters and then securely destroyed.

There’s an interesting sociological problem here. It’s not clear how an entity could choose N and
convince everybody that they have securely destroyed the factors p and g that were used during the
setup. There have been been various proposals for how to achieve this, including “threshold
cryptography” techniques that allow a set of delegates to jointly compute N in such a way that as long
as any one of them deletes their secret inputs, the system will remain secure.

It’s also possible to use a slightly different cryptographic construction to avoid the trusted setup.
Specifically, it has been shown that simply generating a very large random value for N is secure with
high probability, because the number probably cannot be completely factored. Unfortunately this
carries a huge efficiency hit and is thus not considered practical.

Zerocash. Zerocash is a different anonymous cryptocurrency that builds on the concept of Zerocoin
but takes the cryptography to the next level. It uses a cryptographic technique called zero-knowledge
SNARKs (zk-SNARKS) which are a way of making zero-knowledge proofs much more compact and
efficient to verify. The upshot is that the efficiency of the system overall gets to a point where it
becomes possible to run the whole network without needing a basecoin. All transactions can be done
in a zero-knowledge manner. As we saw, Zerocoin supports regular transactions for when you don’t
need unlinkability, augmented with computationally expensive transactions that are used only for
mixing. The mix transactions are of fixed denominations and splitting and merging of values can
happen only in Basecoin. In Zerocash, that distinction is gone. The transaction amounts are now inside
the commitments and no longer visible on the block chain. The cryptographic proofs ensure that the
splitting and merging happens correctly and that users can’t create zerocash out of thin air.
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The only thing that the ledger records publicly is the existence of these transactions, along with proofs
that allow the miners to verify all the properties needed for the correct functioning of the system.
Neither addresses nor values are revealed on the block chain at any point. The only users who need to
know the amount of a transaction are the sender and the receiver of that particular transaction. The
miners don't need to know transaction amounts. Of course, if there is a transaction fee, the miners
need to know that fee, but that doesn't really compromise your anonymity.

The ability to run as an entirely untraceable system of transactions puts zerocash in its own category
when it comes to anonymity and privacy. Zerocash is immune to the side-channel attacks against
mixing because the public ledger no longer contains transaction amounts.

Setting up Zerocash. In terms of its technical properties, Zerocash might sound too good to be true.
There is indeed a catch. Just like Zerocoin, Zerocash requires “public parameters” to set up the
zero-knowledge proof system. But unlike Zerocoin, which requires just one number N which is only a
few hundred bytes, Zerocash requires an enormous set of public parameters — over a gigabyte long.
Once again, to generate these public parameters, Zerocash requires random and secret inputs, and if
anyone knows these secret inputs, it compromises the security of the system by enabling
undetectable double-spends.

We won’t delve any deeper into the challenge of setting up a zk-SNARK system here. It remains an
active area of research, but as of 2015 we don't know exactly how to set up the system in practice in a
sufficiently trustworthy way. To date, zk-SNARKs have not been used in practice.

Putting it all together. Let’'s now compare the solutions that we have seen, both in terms of the
anonymity properties that they provide and in terms of how deployable they are in practice.

System Type Anonymity attacks Deployability
Bitcoin pseudonymous transaction graph analysis default
M I . i h lysis,
zj\n.ua mix transactlon‘grap analysis usable today
mixing bad mixes/peers
Chain of mixes . side channels, bad o .
.. mix i bitcoin-compatible
or coinjoins mixes/peers
Zerocoin cryptcrf;il;(aphlc side channels (possibly) altcoin, trusted setup
Zerocash untraceable none known altcoin, trusted setup

Table 6.14: A comparison of the anonymity technologies presented in this chapter
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We start with Bitcoin itself, which is already deployed and is the ‘default’ system. But it's only
pseudonymous and we've seen that powerful transaction graph analysis is possible. We looked at
ways to cluster large groups of addresses, and how to sometimes attach real-world identities to those
clusters.

The next level of anonymity is using a single mix in a manual way, or doing a Coinjoin by finding peers
manually. This obscures the link between input and output but leaves too many potential clues in the
transaction graph. Besides, mixes and peers could be malicious, hacked, or coerced into revealing
their records. While far from perfect in terms of anonymity, mixing services exist and so this option is
usable today.

The third level we looked at is a chain of mixes or Coinjoins. The anonymity improvement comes from
the fact that there’s less reliance on any single mix or group of peers. Features like standardized chunk
sizes and client-side automation can minimize information leaks, but some side channels are still
present. There’s also the danger of an adversary who controls or colludes with multiple mixes or
peers. Wallets and services that implement a chain of mixes could be deployed and adopted today,
but to our knowledge a secure mix-chain solution isn’t yet readily available.

Next, we saw that Zerocoin bakes cryptography directly into the protocol and brings a mathematical
guarantee of anonymity. We think some side channels are still possible, but it's certainly superior to
the other mixing-based solutions. However, Zerocoin would have to be launched as an altcoin.

Finally, we looked at Zerocash. Due to its improved efficiency, Zerocash can be run as a fully
untraceable — and not just anonymous — cryptocurrency. However, like Zerocoin, Zerocash is not
Bitcoin compatible. Worse, it requires a complex setup process which the community is still figuring
out how best to accomplish.

We've covered a lot of technology in this chapter. Now let's take a step back. Bitcoin’s anonymity (and
potential for anonymity) is powerful, and gains power when combined with other technologies,
particularly anonymous communication. As we’ll see in the next chapter, this is the potent
combination behind the Silk Road and other anonymous online marketplaces.

Despite its power, anonymity is fragile. One mistake can create an unwanted, irreversible link. But
anonymity is worth protecting, since it has many good uses in addition to the obvious bad ones. While
these moral distinctions are important, we find ourselves unable to express them at a technical level.
Anonymity technologies seem to be deeply and inherently morally ambiguous, and as a society we
must learn to live with this fact.

Bitcoin anonymity is an active area of technical innovation as well as ethical debate. We still do not
know which anonymity system for Bitcoin, if any, is going to become prominent or mainstream. That’s
a great opportunity for you — whether a developer, a policy maker, or a user — to get involved and
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make a contribution. Hopefully what you've learned in this chapter has given you the right
background to do that.

Further reading

Even more than the topics discussed in previous chapters, anonymity technologies are constantly
developing and are an active area of cryptocurrency research. The best way to keep up with the latest
in this field is to begin with the papers listed here, and to look for papers that cite them.

The “Fistful of bitcoins” paper on transaction graph analysis:
Meiklejohn, Sarah, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M.

Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 conference on Internet measurement conference, 2013.

A study of mixing technologies and the source of the principles for effective mixing that we discussed:

Bonneau, Joseph, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll, and Edward W.
Felten. Mixcoin: Anonymity for Bitcoin with accountable mixes. Financial Cryptography 2014.

A study of mixing services in practice, showing that many are not reputable:

Malte Moser, Rainer Bhme and Dominic Breuker. An Inquiry into Money Laundering Tools in the
Bitcoin Ecosystem. 2013 eCrime Researchers Summit.

Coinjoin was presented on the Bitcoin forums by Bitcoin Core developer Greg Maxwell:

Maxwell, Gregory. CoinJoin: Bitcoin privacy for the real world. Bitcoin Forum, 2013.

Zerocoin was developed by cryptographers from Johns Hopkins University. Keep in mind Zerocoin and
Zerocash have the most complex cryptography of any scheme we’ve discussed in this book.

Miers, lan, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed
E-Cash from Bitcoin. Proceedings of 2013 IEEE Symposium on Security and Privacy, 2013.

The Zerocoin authors teamed up with other researchers who had developed the SNARK technique.
This collaboration resulted in Zerocash:

Ben Sasson, Eli, Alessandro Chiesa, Christina Garman, Matthew Green, lan Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. Proceedings of 2013 IEEE
Symposium on Security and Privacy, 2014.
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http://www0.cs.ucl.ac.uk/staff/s.meiklejohn/files/imc13.pdf
http://www0.cs.ucl.ac.uk/staff/s.meiklejohn/files/imc13.pdf
https://eprint.iacr.org/2014/077.pdf
https://maltemoeser.de/paper/money-laundering.pdf
https://maltemoeser.de/paper/money-laundering.pdf
https://bitcointalk.org/index.php?topic=279249.0
https://isi.jhu.edu/~mgreen/ZerocoinOakland.pdf
https://isi.jhu.edu/~mgreen/ZerocoinOakland.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

An alternative design to Zerocoin is CryptoNote, which uses different cryptography and offers
different anonymity properties. We didn’t discuss in this chapter for lack of space, but it is an
interesting design approach:

Nicolas van Saberhagen. CryptoNote v. 2.0.

This classic book on cryptography includes a chapter on zero-knowledge proofs:
Goldreich, Oded. Foundations of Cryptography: Volume 1. Cambridge university press, 2007.
The paper that describes the technical design of the anonymous communication network Tor:

Dingledine, Roger, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion router.
Naval Research Lab Washington DC, 2004.

The “systematization of knowledge” paper on Bitcoin and cryptocurrencies, especially Section VIl on
Anonymity and Privacy:

Bonneau, Joseph, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and Edward W.
Felten. Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. Proceedings of 2015
IEEE Security and Privacy Conference, 2015.
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https://cryptonote.org/whitepaper.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a465464.pdf
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf

Chapter 7: Community, Politics, and Regulation

In this chapter we'll look at all the ways that the world of Bitcoin and cryptocurrency technology
touches the world of people. We'll discuss the Bitcoin community’s internal politics as well as the
ways that Bitcoin interacts with traditional politics, namely law enforcement and regulation issues.

7.1: Consensus in Bitcoin

First let’s look at consensus in Bitcoin, that is, the way that the operation of Bitcoin relies on the
formation of consensus amongst people. There are three kinds of consensus that have to operate for
Bitcoin to be successful.

1. Consensus about rules. By rules we mean things like what makes a transaction or a block valid, the
core protocols and data formats involved in making Bitcoin work.

You need to have a consensus about these things so that all the different participants in the system
can talk to each other and agree on what's happening.

2. Consensus about history. That is, consensus about what is and isn’t in the block chain, and
therefore a consensus about which transactions have occurred. Once you have that, what follows is a
consensus about which coins — which unspent outputs — exist and who owns them.

This consensus results from the processes we’ve looked at in Chapter 2 and other earlier chapters
from which the block chain is built and by which nodes come to consensus about the contents of the
block chain. This is the most familiar and most technically intricate kind of consensus in Bitcoin.

3. Consensus that coins are valuable. The third form of consensus is the general agreement that
bitcoins are valuable and in particular the consensus that if someone gives you a bitcoin today, then
tomorrow you will be able to redeem or trade that for something of value.

Any currency, whether it's a fiat currency like the dollar or cryptocurrency like Bitcoin, relies on
consensus that it has value. That is, you need people to generally accept that it's exchangeable for
something else of value, now and in the future.

In a fiat currency, this is the only kind of consensus. The rules don’t emerge by consensus --- what is
and isn’t a dollar bill is declared by fiat. History isn’t salient, but state is --- who owns what. State is
either determined by physical possession, as with cash, or delegated to professional record keepers,
i.e., banks. In cryptocurrencies, on the other hand, rules and history are also subject to consensus.

In Bitcoin, this form of consensus, unlike the others, is a bit circular. In other words, my belief that the
bitcoins I'm receiving today are of value depends on my expectation that tomorrow other people will
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believe the same thing. So consensus on value relies on believing that consensus on value will
continue. This is sometimes called the Tinkerbell effect by analogy to Peter Pan where it's said that
Tinkerbell exists because you believe in her.

Whether it's circular or not, it seems to exist and it's important for Bitcoin to operate. Now, what's
important about all three forms of consensus is that they're intertwined with each other, as Figure 7.1

shows.
(consensus about rulesL

7

consensus that coins
are valuable

[consensus about history]

Figure 7.1: Relationships between the three forms of consensus in Bitcoin

First of all, consensus about rules and consensus about history go together. Without knowing which
blocks are valid you can’t have consensus about the block chain. And without consensus about which
blocks are in the block chain, you can’t know if a transaction is valid or if it’s trying to spend an
already-spent output.

Consensus about history and consensus that coins are valuable are also tied together. Consensus
about history means that we agree on who owns which coins, and that’s a prerequisite for believing
that the coins have value — without a consensus that | own a particular coin | can’t have any
expectation that people will accept that coin from me as payment in the future. It’s true in reverse as
well — as we saw in Chapter 2, consensus about value is what incentivizes miners to maintain the
security of the block chain, which gets us consensus about history.

The genius in Bitcoin’s original design was in recognizing that it would be very difficult to get any one
of these types of consensus by itself. Consensus about the rules in a worldwide decentralized
environment where there's no notion of identity isn’t the kind of thing that's likely to happen.

Consensus about history, similarly, is a very difficult distributed data structure problem that is not
likely to be solvable on its own. And a consensus that some kind of cryptocurrency has value is also
very difficult to achieve. What the design of Bitcoin and the continued operation of Bitcoin show is
that even if you can't build any one of these forms of consensus by itself you can somehow stand up
all three of them together and get them to operate in an interdependent way. So when we talk about
how things operate in the Bitcoin community we have to bear in mind that Bitcoin relies on
agreement by the participants and that consensus is a fragile and interdependent thing.
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7.2: Bitcoin Core Software

Bitcoin Core is a piece of open-source software which is a focal point for discussion and debate about
Bitcoin’s rules.

Bitcoin Core is licensed under the MIT license which is a very permissive open-source license. It allows
the software to be used for almost any purpose as long as the source is attributed and the MIT license
is not stripped out. Bitcoin Core is the most widely used Bitcoin software and even those who don't
use it tend to look to it to define what the rules are. That is, people building alternative Bitcoin
software typically try to mimic the rule-defining parts of the Bitcoin Core software, the parts that
check validity of transactions and blocks.

Bitcoin Core is the de-facto rulebook of Bitcoin. If you want to know what’s valid in Bitcoin, the
Bitcoin Core software — or explanations of it — is where to look.

Bitcoin Improvement Proposals. Anyone can contribute technical improvements via “pull requests”
to Bitcoin Core, a familiar process in the world of open-source software. For more substantial
changes, especially protocol modifications, there is a process called Bitcoin Improvement Proposals or
BIPs. These are formal proposals for changes to Bitcoin. Typically a BIP will include a technical
specification for a proposed change as well as a rationale for it. So if you have an idea for how to
improve Bitcoin by making some technical change, you're encouraged to write up one of these
documents and to publish it as part of the Bitcoin Improvement Proposal series, and that will then
kick off a discussion in the community about what to do. While the formal process is open to anyone,
there’s a learning curve for participation like any open-source project.

BIPs are published in a numbered series. Each one has a champion, that is, an author who evangelizes
in favor of it, coordinates discussion and tries to build a consensus within the community in favor of
going forward with or implementing a particular proposal.

What we said above applies to proposals to change the technology. There are also some BIPs that are
purely informational and exist just to tell people things that they might not otherwise know, to
standardize some part of the protocol previously only specified in source code, or that are process
oriented, that talk about how things should be decided in the Bitcoin community.

In summary, Bitcoin has a rulebook as well as a process for proposing, specifying, and discussing rule
changes, namely BIPs.

Bitcoin Core developers. To understand the role of the Bitcoin Core software we also have to
understand the role of Bitcoin Core developers. The original code was written by Satoshi Nakamoto,
who we'll return to later in the chapter. Nakamoto is no longer active, but instead there are a group
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of developers who maintain Bitcoin Core. As of early 2015 there are five with “commit” access to the
Core repository: Gavin Andresen, Jeff Garzik, Gregory Maxwell, Wladimir J. van der Laan, and Pieter
Wouille. The Core developers lead the effort to continue development of the software and are in
charge of which code gets pushed into new versions of Bitcoin Core.

How powerful are these people? In one sense they’re very powerful, because you could argue that
any of the rule changes to the code that they make will get shipped in Bitcoin Core and will be
followed by default. These are the people who hold the pen that can write things into the de-facto
rulebook of Bitcoin. In another sense, they’re not powerful at all. Because it's open-source software,
anyone can copy it and modify it, in other words, fork the software at any time, and so if the lead
developers start behaving in a way that the community doesn't like, the community can goin a
different direction.

One way of thinking about this is to say that the lead developers are leading the parade. They’re out
in front of the parade marching and the parade will generally follow them when they turn a corner,
but if they try to lead the parade into an action that is disastrous, then the parade members marching
behind them might decide to go in a different direction. They can urge people on, and as long as they
seem to be behaving reasonably, the group will probably follow them, but they don't have formal
power to force people to follow them if they take the system in a technical direction that the
community doesn't like.

Let’s think about what you as a user of a system can do if you don't like the way the rules are going or
the way it's being run, and compare it to a centralized currency like a fiat currency. In a centralized
currency if you don't like what's going on you have a right to exit, that is, you can stop using it. You'd
have to try and sell any currency you hold, and you might have to move to someplace with a different
fiat currency. Whether or not it’s easy, with a centralized currency that's really your only option.

With Bitcoin, you certainly have the right to exit, but because it operates in an open-source way, you
additionally have the right to fork the rules. That means you, and some of your friends and colleagues
can decide that you would rather live under a different rule set, and you can fork the rules and go a
different direction from the lead developers. The right to fork is more empowering for users than the
right to exit, and therefore the community has more power in a system like Bitcoin which is open
source than it would in a purely centralized system. So although the lead developers might look like a
centralized entity controlling things, in fact they don't have the power that a purely centralized
manager or software owner would have.

Forks in the rules. One way to fork the software and the rules is to start a new block chain with a new
genesis block. This is a popular option for creating altcoins, which we’ll discuss in Chapter 10. But for
now let’s consider a different type of fork in the rules, one in which those who fork decide to fork the
block chain as well.

If you recall the distinction between a hard fork and a soft fork from Chapter 3, we’re talking about a
hard fork here. At the point when there’s a disagreement about the rules, there will be a fork in the
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block chain, resulting in two branches. One branch is valid under rule set A but invalid under rule set
B, and vice versa. Once the miners operating under the two rule sets separate they can’t come back
together because each branch will contain transactions or blocks that are invalid according to the
other rule set.

“A-coin”
“Bitcoin’ Lt vt tnder & rutes
<+ = =
. < Valid under B rules
Invalid under A rules
“B-coin”

Figure 7.2: A fork in the currency. If a fork in the rules leads to a hard fork in the block chain, the
currency itself forks and two new currencies result.

We can think of the currency we had up until the fork as being Bitcoin — the big happy Bitcoin that
everyone agreed on. After the fork it's as if there are two new currencies, A-coin corresponding rule
set A and B-coin corresponding to rule set B. At the moment of the fork, it’s as if everyone who owned
one bitcoin receives one A-coin and one B-coin. From that point on, A-coin and B-coin will operate
separately as if they were separate currencies, and they might operate independently. The two
groups might continue to evolve their rules in different ways.

We should emphasize that it's not just the software, or the rules, or the software implementing the
rules that forked — it's the currency itself that forked. This is an interesting thing that can happenin a
cryptocurrency that couldn't happen in a traditional currency where the option of forking is not
available to users. To our knowledge, neither Bitcoin nor any altcoin has ever forked in this way, but
it’s a fascinating possibility.

How might people respond to a fork like this? It depends on why the fork happened. The first case is
where the fork was not intended as a disagreement about the rules, but instead as a way of starting
an altcoin. Someone might start an altcoin by forking Bitcoin’s block chain if they want to start with a
ruleset that’s very close to Bitcoin’s. This doesn’t really pose a problem for the community — the
altcoin goes its separate way, the branches coexist peacefully, and some people will prefer to use
bitcoins while others will prefer the altcoin. But as we said earlier, as far as we know, no one’s ever
started an altcoin by forking Bitcoin’s or another existing altcoin’s block chain. They’ve always started
with a new genesis block.
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The interesting case is if the fork reflected a fight between two groups about what the future of
Bitcoin should be — in other words, a rebellion within the Bitcoin community where a sub-group
decides to break off and decides they have a better idea about how the system should be run. In that
case, the two branches are rivals and will fight for market share. A-coin and B-coin will each try to get
more merchants to accept it and more people to buy it. Each will want to be perceived as the “real
Bitcoin.” There may be a public-relations fight where each claims legitimacy and portrays the other as
a weird splinter group.

The probable outcome is that one branch will eventually win and the other will melt away. These sorts
of competitions tend to tip in one direction. Once one of the two gets seen as more legitimate and
obtains a bigger market share, the network effect will prevail and the other becomes a niche currency
and will eventually fall away. The rule set and the governance structure of the winner will become the
de-facto rule set and governance structure of Bitcoin.

7.3: Stakeholders: Who's in Charge?

Who are the stakeholders in Bitcoin, and who's really in charge? We've seen how Bitcoin relies on
consensus and how its rulebook is written in practice. We've analyzed the possibility of a fork or a
fight about what the rules should be. Now let’s take up the question of who has the power to
determine who might win a fight like that.

In other words, if there’s a discussion and negotiation in the community about rule-setting, and that
negotiation fails, we want to know what will determine the outcome. Generally speaking, in any
negotiation, the party that has the best alternative to a negotiated agreement has the advantage in a
negotiation. So figuring out who might win a fight will tell us who has the upper hand in community
discussions and negotiations about the future of Bitcoin.

We can claims on behalf of many different stakeholders:

1. Core developers have the power — they write the rulebook and almost everybody uses their
code.

2. Miners have the power — they write history and decide which transactions are valid. If miners
decide to follow a certain set of rules, arguably everyone else has to follow it. The fork with
more mining power behind it will build a stronger, more secure block chain and so has some
ability to push the rules in a particular direction. Just how much power they have depends on
whether it’s a hard fork or a soft fork, but either way they have some power.

3. Investors have the power — they buy and hold bitcoins, so it's the investors who decide
whether Bitcoin has any value. You could argue that if the developers control consensus about
the rules and the miners control consensus about history, it's the investors who control
consensus that Bitcoin has value. In the case of a hard fork, if investors mostly decide to put
their money in either A-coin or B-coin, that branch will be perceived as legitimate.

4. Merchants and their customers have the power — they generate the primary demand for
Bitcoin. While investors provide some of the demand that supports the price of the currency,
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the primary demand that drives the price of the currency, as we saw in Chapter 4, arises from
a desire to mediate transactions using Bitcoin as a payment technology. Investors, according
to this argument, are just guessing where the primary demand will be in the future.

5. Payment services have the power — they’re the ones that handle transactions. A lot of
merchants don't care which currency they follow and simply want to use a payment service
that will give them dollars at the end of the day, allow their customers to pay using a
cryptocurrency, and handle all the risk. So maybe payment services drive primary demand and
merchants, customers, and investors will follow them.

As you may have guessed, there's some merit to all these arguments, and all of those entities have
some power. In order to succeed, a coin needs all these forms of consensus — a stable rulebook
written by developers, mining power, investment, participation by merchants and customers, and the
payment services that support them. So all of these parties have some power in controlling the
outcome about a fight over the future of Bitcoin, and there's no one that we can point to as being the
definite winner. It's a big, ugly, messy consensus-building exercise.

Sidebar: governance of open protocols. We’ve described a system where numerous stakeholders
with imperfectly aligned interests collaborate on open protocols and software and try to reach
technical and social consensus. This might remind you of the architecture of the Internet itself.
There are indeed many similarities between the development process of Bitcoin Core and that of
the Internet. For example, the BIP process is reminiscent of the RFC, or Request For Comments,
which is a type of standards-setting document for the Internet.

Bitcoin advocacy groups. Another player that’s relevant to the governance of Bitcoin is the Bitcoin
Foundation. It was founded in 2012 as a nonprofit. It's played two main roles. The first is funding
some of the Core developers out of the foundation’s assets so that they can work full time on
continuing to develop the software. The second is talking to government, especially the US
government, as the “voice of Bitcoin.”

Now, some members of the Bitcoin community believe that Bitcoin should operate outside of and
apart from traditional national governments. They believe Bitcoin should operate across borders and
shouldn’t explain or justify itself to governments or negotiate with them. Others take a different view.
They view regulation as inevitable, desirable, or both. They would like the interests of the Bitcoin
community to be represented in government and for the community’s arguments to be heard. The
Foundation arose partly to fill this need, and it's fair to say that its dealings with government have
done a lot to smooth the road for an understanding and acceptance of Bitcoin.

The Foundation has had quite a bit of controversy. Some board members have gotten into criminal or
financial trouble, and there have been questions about the extent to which some of them represent
the community. The Foundation has had to struggle with members of the board that become
liabilities and have to be replaced on short notice. It’s been accused of lacking transparency and of
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being effectively bankrupt. As of early 2015, it’s at best unclear if the Bitcoin Foundation will have
much of a role in Bitcoin’s future.

A different non-profit group, Coin Center, launched in September 2014 based in Washington, D.C., has
taken on one of the roles the Bitcoin Foundation played, namely advocacy and talking to government.
Coin Center acts as a “think tank.” It has operated without much controversy as of early 2015. Neither
the Bitcoin Foundation nor Coin Center is in charge of Bitcoin anymore than any of the other
stakeholders. The success and perceived legitimacy of any such representative entity will be driven by
how much support — and funding — it can obtain from the community over time, like everything else
in this kind of open source based ecosystem.

To summarize, there’s no one entity or group that is definitively in control of Bitcoin’s evolution. In
another sense, everybody is in charge because it's the existence of consensus about how the system
will operate — the three interlocking forms of consensus, on rules, on history, and on value — that
governs Bitcoin. Any ruleset, group, or governance structure that can maintain that consensus over
time will, in a very real sense, be in charge of Bitcoin.

7.4: Roots of Bitcoin

Let’s look at the roots of Bitcoin — how it got started, what its precursors were, and what we know
about its mysterious founder.

Cypherpunk and digital cash. There are two precursors to Bitcoin worth discussing. One of these was
cypherpunk, a movement that brought together two viewpoints. First was libertarianism and in
particular the idea that society would be better off with either no government or very minimal
government. Together with that strong libertarian (or perhaps even anarchist) notion, we had the
idea of strong cryptography and in particular public-key cryptography which started in the late 1970s.
The cypherpunk movement was a group of people who believed that with strong online privacy and
strong cryptography you could re-architect the way that people interact with each other. In this
world, cypherpunks believed, people could protect themselves and their interests more effectively
and with much less activity (or, as they would say, interference) from government.

One of the challenges in the cypherpunk movement was how to deal with money in a future
cypherpunk world where people were interacting online via strong technical and cryptographic
measures. This inspired much research, led especially by early digital cash work by David Chaum and
others, that aimed to create new forms of digital value that functioned like money, specifically cash, in
the sense of being anonymous and easily exchangeable. There’s a whole interesting story about how
these technical ideas were developed and why early digital cash didn't sweep the world, but we won’t
go into it here. In any event, early work in that area came together with cypherpunk beliefs and in
particular the desire to have a strong currency that would be decentralized, online, and relatively
private to sow the seeds from which Bitcoin would be born. It’s also the basis for the philosophy that
many of Bitcoin’s supporters follow.
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Satoshi Nakamoto. Bitcoin began in 2008 with the release of a white paper titled Bitcoin: A Peer to
Peer Electronic Cash System that was authored by Satoshi Nakamoto. This paper, which was made
freely available online, is the initial description of what Bitcoin is, how it works, and the philosophy
behind its design. It’s still a good resource to get a quick idea of how Bitcoin’s technical design and
philosophy were specified. Open-source software implementing that specification was released soon
after by the same Satoshi Nakamoto, and that’s where everything started. To this day, Satoshi is one
of the central mysteries of Bitcoin.

We know that the name Satoshi Nakamoto is almost certainly a pseudonym that some person or
group of people adopted for Bitcoin-related purposes. There is no prior record of the same Satoshi
Nakamoto existing and Satoshi Nakamoto essentially only spoke about Bitcoin. Satoshi’s identity is
associated with certain public keys and certain accounts in some websites. Digital signatures with
these keys offer the only convincing proof that something was said or done by the real Satoshi. So
Satoshi, while being a pseudonym, is also an identity which can speak, and who spoke especially
extensively in the early history of Bitcoin. Satoshi was fairly active in working on and writing about
Bitcoin, and participating in online forums from 2008 until mid-2010 at which point Satoshi handed
over control of the Bitcoin Core source code to other developers and has since said nothing. Most in
the community feel Satoshi is not going to return.

Satoshi claimed to be a 37-year old male living in Japan (as of 2009). However, there is no evidence
that Satoshi spoke or understood Japanese but we do know that Satoshi writes fairly fluently in
English, although sometimes with American spelling sometimes with British spelling. There have been
numerous attempts to look at Satoshi’s text, code, post times, machine identifiers, and so on to try to
answer questions like: what is Satoshi's native language? Where is Satoshi from? There have even
been attempts to use stylometry (the algorithmic analysis of text for writer-specific patterns) to
uncover Satoshi’s identity. The real identity of Satoshi is still unknown, despite occasional confident
pronouncements by individuals and, at least once, a news organization.

We also know that Satoshi acquired a huge number of bitcoins from early mining. In the very
beginning Satoshi was the only miner and one of a limited number for much of Bitcoin’s early history.
Until Bitcoin mining took off and the network’s hash rate started to increase due to the influx of other
miners, Satoshi was accumulating a significant portion of block rewards, which was then 50 bitcoins
every 10 minutes. As Bitcoin’s price appreciated, this turned into a small fortune, at one point worth
several billion dollars. We know that these bitcoins haven’t been cashed out. Indeed, they’ve never
been moved since being mined. Everybody can see which Bitcoin addresses probably belong to
Satoshi, and so if those coins were to be sold and the proceeds transferred into any particular bank
account, it would be a very notable event and an important clue to Satoshi's identity. So, interestingly,
even though Satoshi has on paper made a considerable profit from Bitcoin mining, Satoshi is unable to
cash in that profit without identifying himself or herself, and that’s something that, for whatever
reason, Satoshi doesn't want to do.
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In an important sense it doesn't matter that we don’t know Satoshi’s identity because of the notable
feature of Bitcoin that it is decentralized and with no single entity in charge. Satoshi's not in charge,
and to some extent it doesn't really matter what Satoshi thinks anymore. Any special influence that
Satoshi has is only because of respect that Satoshi would have in the Bitcoin community should
Satoshi become active again.

Growth. Bitcoin has grown considerably since the system became operational in January 2009. We
can see it in the graph of transaction volume (Figure 7.3) and in the graph of the exchange rate (7.4),
although the all-time peak price, as of April 2015, was back in late 2013. Sometimes the growth has
been gradual, but sometimes there have been jumps or spurts, often corresponding to newsworthy
events. Generally speaking, the growth has accelerated over time.
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Figure 7.3: Market Price of Bitcoin (7-day average). Note the logarithmic scale.
Source: bitcoincharts.com.
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Figure 7.4: Daily transaction volume (7-day average). Source: bitcoincharts.com.
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7.5: Governments Notice Bitcoin

The rest of this chapter is about governments — government interaction with Bitcoin and attempts to
regulate Bitcoin. Let’s start with the moment when governments noticed Bitcoin, that is, when Bitcoin
became a big enough phenomenon that government started to worry about the impact it might have
and how to react to it. In this section and the next we’ll discuss why governments might worry about
Bitcoin specifically. Then in Section 7.7 we’ll turn to areas where Bitcoin businesses may be regulated
for similar reasons as other types of businesses. Finally in Section 7.8 we'll look at a case study of a
proposed regulation that combines elements of regular consumer financial protection with
Bitcoin-specific aspects.

Capital controls. One reason why governments would notice a digital currency like Bitcoin is that
untraceable digital cash, if it exists, defeats capital controls. Capital controls are rules or laws that a
country has in place that are designed to limit the flow of capital (money and other assets) into or out
of the country. By putting controls on banks, investments, and so on, the country can try to regulate
these flows.

Bitcoin is a very easy way, under some circumstances, to defeat capital controls. Someone can simply
buy bitcoins with capital inside the country, transmit those bitcoins outside the country electronically,
and then trade them for capital or wealth outside the country. That would let them move capital or
wealth from inside to outside and similarly they can move capital from outside to inside. Because
wealth in this electronic form can move so easily across borders and can't really be controlled, a
government that wants to enforce capital controls in a world with Bitcoin has to try to disconnect the
Bitcoin world from the local fiat currency banking system. That would make it infeasible for someone
to turn large amounts of local currency into Bitcoin, or large amounts of Bitcoin into local currency.
We have indeed seen countries trying protect their capital controls do exactly that, with China being a
notable example. China has engaged in increasingly strong measures to try to disconnect bitcoins
from the Chinese fiat currency banking system by preventing business from exchanging bitcoins for
yuan.

Crime. Another reason governments might worry about untraceable digital cash is that it makes
certain kinds of crimes easier — in particular, crimes like kidnapping and extortion that involve the
payment of a ransom. Those crimes become easier when payment can be done at a distance and
anonymously.

Law enforcement against kidnappers, for example, often has relied upon exploiting the hand-off of
money from the victim or the victim’s family to the criminals. When that can be done at a distance in
an anonymous way, it becomes much harder for law enforcement to follow the money. Another
example: the “CryptoLocker” malware encrypts victims’ files and demands ransom in Bitcoin (or other
types of electronic money) to decrypt them. So the crime and the payment are both carried out at a
distance. Similarly, tax evasion becomes easier when it's easier for people to move money around and
to engage in transactions that are not easily tied to a particular individual or identity. Finally, the sale
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of illegal items becomes potentially easier when the transfer of funds can happen at a distance and
without needing to go through a regulated institution.

Silk Road. A good example of that is Silk Road, a self-styled “anonymous marketplace” which has also
been called “the eBay for illegal drugs.” Figure 7.5 shows a screenshot of Silk Road’s website when it
was operating. lllegal drugs were the primary items for sale, with a smattering of other categories that
you can see on the left.

Silk Road allowed sellers to advertise goods for sale and buyers to buy them. The goods were
delivered typically through the mail or through shipment services and payment was made in bitcoins.

The website operated as a Tor hidden service, a concept we discussed in Chapter 6. As you can see in
the screenshot, its address was http://silkroadvb5piz3r.onion. This way the server’s location was
hidden from law enforcement. Due to the use of bitcoins for payment it was also difficult for law
enforcement to follow the money and figure out who the people participating in the market were.
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Figure 7.5: Screenshot of Silk Road website (April 2012).
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Silk Road held the bitcoins in escrow while the goods were shipped. There was an innovative escrow
system which helped protect the buyers and sellers against cheating by other parties. The bitcoins
would be released once the buyer certified that the goods had arrived. There was also an eBay-like
reputation system that allowed buyers and sellers to get reputations for following through on their
deals, and by using that reputation system Silk Road was able to give the market participants an
incentive to play by the rules. So, Silk Road was innovative among criminal markets in finding ways of
enforcing the rules of the criminal market at a distance, which is something that criminal markets in
the past have had difficulty doing.

Silk Road was run by a person who called himself Dread Pirate Roberts — obviously a pseudonym,
which you might recognize as reference to hero of the novel/film The Princess Bride. It operated from
February 2011 until October 2013. Silk road was shut down after the arrest of its operator Ross
Ulbricht, who was later identified as Dread Pirate Roberts. Ulbricht had tried to cover his tracks by
operating pseudonymous accounts and by using Tor, anonymous remailers, and so on. The
government was nevertheless able to connect the dots and connect him to Silk Road activity — to the
servers and the bitcoins he controlled as the operator of Silk Road. He was convicted of various crimes
relating to operating Silk Road. He was also charged with attempted murder for hire, although
fortunately he was incompetent enough at it that nobody actually got killed.

In the course of taking down Silk Road, the FBI seized about 174,000 bitcoins, worth over $30 million
at the time. As with the proceeds of any crime under US law, they could be seized by the government.
Later the government auctioned off a portion of the seized bitcoins.

Lessons from Silk Road. There are several lessons from Silk Road and from the encounter between
law enforcement and Ulbricht. First it's pretty hard to keep the real world and the virtual world
separate. Ulbricht believed that he could live his real life in society and at the same time have a secret
identity in which he operated a sizeable business and technology infrastructure. It's difficult to keep
these separate worlds completely apart, and not accidentally create some linkage between them. It's
hard to stay anonymous for a long time while being active and engaging in a course of coordinated
conduct working with other people over time. If there's ever a connection between those two
identities — say, if you slip up and use the name of one while wearing the mask of another — that link
can never be destroyed and over time the different anonymous identities or mask that someone is
trying to use tend to get connected. That’s exactly what happened to Ulbricht-he made a few
mistakes early on in using the same computers to access his personal accounts and Dread Pirate
Roberts accounts and this was eventually enough for investigators to discover his offline identity.

Another lesson is that law enforcement can follow the money. Even before Ulbricht’s arrest, the
government knew that certain Bitcoin addresses were controlled by the operator of Silk Road, and
they were watching those addresses. The result is that Ulbricht, while wealthy according to the block
chain, was not actually able to benefit from that wealth because any attempt to transfer those assets
into dollars would have resulted in a traceable event, and probably would have resulted in rapid
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arrest. So although Ulbricht was the owner of something like 174,000 bitcoins, in the real world he
was not living like a king. He lived in a one-bedroom apartment in San Francisco while apparently
unable to get to the wealth that he controlled.

In short, if you intend to operate an underground criminal enterprise — and obviously we wouldn’t
recommend this path — then it's a lot harder to do than you might think. Technologies like Bitcoin
and Tor are not bullet-proof and law enforcement still has significant tools at their disposal. Although
there’s been some panic in the world of law enforcement over the rise of Bitcoin, they are starting to
realize that they can still follow the money up to a point and they still do have a substantial ability to
investigate crimes and to make life difficult for people who want to engage in coordinated criminal
action.

At the same time, we don’t mean to suggest that by taking down Silk Road, law enforcement has shut
down Bitcoin-based hidden markets for illegal drugs for good. In fact, after the demise of Silk Road
there has been a mushrooming of such markets. Some of the more prominent ones are Sheep
Marketplace, Silk Road 2, Black Market Reloaded, Evolution, and Agora. Most of these are now
defunct, either due to law-enforcement actions or due to theft, often by insiders. However, research
has found that the total volume of sales has only gone up, with law enforcement actions against
individual sites not significantly slowing the growth of this underground market. To address the
security risk of the site operator disappearing with buyers’ escrowed funds, the newer marketplaces
use multi-signature escrow (which we saw in Chapter 3) rather than Silk Road’s model of depositing
the funds with the market operator.

7.6: Anti Money-Laundering

In this section we'll look at money laundering and the Anti Money Laundering (AML) rules that
governments have imposed, especially in the US, that affect some Bitcoin-related businesses.

The goal of anti-money-laundering policy is to prevent large flows of money from crossing borders or
moving between the underground and legitimate economy without being detected. Earlier we looked
at capital controls that exist to prevent money from crossing borders. In some cases, countries are just
fine with money crossing borders, but they want to know who's transferring what to whom and
where that money came from.

Anti-money laundering is aimed at trying to make certain kinds of crime more difficult, especially
organized crime. Organized crime groups often find themselves getting a lot of money coming in in
one place and wanting to move it somewhere else, but not wanting to explain where that money
came from — hence the desire to get money across borders. Or they might find themselves making a
lot of money in an underground economy and wanting to get that money into the legitimate economy
so that they can spend it on sports cars and big houses or whatever it is that the leaders of the group
want to do. Anti-money laundering, then, has the goals of making it harder to move money around
this way and making it easier to catch people trying to do it.
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Know Your Customer. One of the essential countermeasures against money laundering is something
called Know Your Customer laws, sometimes called KYC. The details can be a bit complicated and will
depend on your locale, but the basic idea is this: Know Your Customer rules require certain kinds of
businesses that handle money to do three things:

1. Identify and authenticate clients — get some kind of authentication that clients really are who
they claim they are and that those claimed identities correspond to some kind of real-world
identity. So a person can't just walk in and they’re John Smith from 123 Main Street in
AnyTown, USA — they have to provide reliable identification documents.

2. Evaluate risk of client — determine the risk of a certain client engaging in underground
activities. This will be based on how the client behaves — how longstanding their business
relationship is with the company, how well known they are in the community, and various
other factors. KYC rules generally require covered companies to treat clients whose activities
seem riskier with more attention.

3. Watch for anomalous behavior — that is, behavior that seems to be indicative of money
laundering or criminal activity. KYC will often require a company to cut off business with a
client who looks dodgy, or who is unable to authenticate themselves or their activities
sufficiently for the rule.

Mandatory reporting. There are mandatory reporting requirements in the United States that are
worth talking about. Companies in a broad range of sectors have to report currency transactions that
are over $10,000. They must file what’s called a currency transaction report to say what the
transaction is and who the other party to the transaction is. There is also some requirement to
authenticate who that party is. Once reported, the information goes into government databases and
then might be analyzed to look for patterns of behavior that are indicative of money laundering.

Companies are also required to watch for clients who might be “structuring” transactions to avoid
reporting, like engaging in a series of $9,999 transactions to get around the $10,000 reporting rule.
Companies that see evidence of structuring must report it by filing a Suspicious Activity Report. Again,
the information goes into a government database and might lead to investigation of the client.

The requirements here differ significantly by country. We’re not by any means trying to give you legal
advice about whether you need this or what you have to do. This discussion is meant to give you an
idea about what kind of requirements are imposed by anti money-laundering rules. That said, take
note that governments — in the U.S. and other countries— tend to take anti money-laundering rules
very, very seriously with large criminal sentences for violations. These aren’t the kind of rules that you
can just blow off and deal with if you get a complaint from the government later.

Bitcoin businesses have been shut down — sometimes temporarily, sometimes permanently. Business
people have been arrested, and people have gone to jail for not following these rules. This is an area
where government will enforce the law vigorously, regardless of whether fiat currency or Bitcoin is
used. Government has enforced these laws against Bitcoin-based businesses ever since they noticed
that Bitcoin was large enough to pose a risk of money laundering. If you're interested in starting any
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kind of business that will handle large volumes of currency, you’ll need to talk to a lawyer who
understands these rules.

7.7: Regulation

Now let’s directly address the 'R' word — regulation. Regulation often gets a bad name, especially
among the kind of people who tend to like Bitcoin. As the argument goes, regulation is some
bureaucrat who doesn't know my business or what I'm trying to do, coming in and messing things up.
It's a burden. It's stupid and pointless. This argument is common and well understood, and while it’s
often at least partially correct, we won’t repeat it here.

Instead, in this section we’ll look in some detail at reasons why regulations might sometimes be
justified, because that argument is not as well understood. To be clear, the fact that we're spending
most of this section talking about why regulation might be good shouldn't be read as an endorsement
of widespread regulation. It's simply that we want to bring a bit more balance to the discussion in a
community where regulation is often considered to be inherently bad.

The bottom line argument in favor or regulation is this: when markets fail and produce outcomes that
are bad — and agreed to be bad by pretty much everyone in the market — then regulation can step in
and try to address the failure. So the argument for regulation, when there is an argument, starts with
the idea that markets don't always give you the result that you'd like.

Let’s make this a bit more precise, using terms from economics. What worries us is a market failure,
and by that we don’t simply mean that something bad is happening or somebody feels they are
getting ripped off or treated unfairly. We mean that there is an alternate allocation of goods to the
market participants that would result in everybody being better off, or at least not worse off. Such an
alternate allocation is called a Pareto improvement.

Lemons market. Let’s discuss one way in which the market can fail, a classic example called the
lemons market. The name originated in the context of selling cars. Let's say that all cars are either of
low quality or high quality (with nothing in between). A high-quality car costs a little bit more to
manufacture than a low-quality car, but it's much, much better for the consumer who buys it.

If the market is operating well (if it’s efficient as economists call it) it will deliver mostly high-quality
car to consumers. That’s because even though the high-quality car is a bit costlier, most consumers
prefer it and are willing to pay more for it. So under certain assumptions a market will provide this
happy outcome.

On the other hand, let's suppose customers can't tell low-quality cars apart from high-quality cars. A
low-quality car (a lemon) sitting on the lot may look pretty good, but you can't really tell if it's going to
break down tomorrow or if it's going to run for a long time. The dealer probably knows if it's a lemon,
but you as the customer can't tell the difference.
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Let’s think about the incentives that drive people in this kind of lemons market. As a consumer, you're
not willing to pay extra for a high-quality car, because you just can't tell the difference. Even if the
used car dealer says that a car is perfect and is only an extra hundred dollars, you don’t have a good
reason to trust the dealer.

As a consequence, producers can't make any extra money by selling a high-quality car. In fact, they
lose money by selling a high-quality car because it costs a bit more to produce and they don't get any
price premium. So the market gets stuck at an equilibrium where only low-quality cars are produced,
and consumers are relatively unhappy with them.

This outcome is worse for everybody than a properly functioning market would be. It's worse for
buyers because they have to make do with low-quality cars. In a more efficient market they could
have bought a car that was much, much better for a slightly higher price. It's also worse for producers
— since the cars that are on the market are all lousy, consumers don't buy as many cars as they might
otherwise, so there's less money to be made selling cars than there would be in a healthy market.

That's a market failure. This particular example has is not inherently dependent on cars. Any good (r
“widget”) for sale which suffers from “asymmetric information” in which either sellers or buyers are
have much better information about the quality of the good may result in a market failure. This type
of market failure is called a lemons market, though the economics literature provides many more
examples.

Fixing a lemons market. There are some market-based approaches that try to fix a lemons market.
The first relies on seller reputation. The idea is that if a seller consistently tells the truth to consumers
about which widgets are high vs. low quality, then the seller might acquire a reputation for telling the
truth. Once they have that reputation, they may be able to sell high-quality widgets for a higher price
because consumers will believe them and therefore the market can operate more efficiently.

This sometimes works and sometimes doesn't depending on the precise assumptions you make about
the market. Of course, it will never work as well as a market where consumers can actually tell the
difference in quality. For one thing, it takes a while for a producer to build up a good reputation. That
means they have to sell high-quality widgets at low prices for a while until consumers learn that
they’re telling the truth. That makes it harder for an honest seller to get into the market.

The other potential problem is that a seller, even if they've been honest up to now, no longer has the
incentive to be honest if they want to get out of the market (say, if their sales are shrinking). In that
case their incentive is to massively cheat people all at once and then exit the market. So reputation
doesn’t work well at either the beginning or end of a seller’s presence in the market.

A reputation-based approach also tends not to work in businesses where consumers don't do repeat
business with the same entity, or where the product category is very new, and therefore there hasn’t
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been enough time for sellers to build up a reputation. A high-tech market like Bitcoin exchanges
suffers just those problems.

The other market-based approach is warranties. The idea is that a seller could provide a warranty to a
buyer that says if the widget turns out to be low quality, the seller will provide an exchange or a
refund. That can work well up to a point, but there's also a problem: a warranty is just another kind of
product that can also come in high-quality or low-quality versions! A low-quality warranty is one
where the seller doesn't really come through when you come back with the broken product. They
renege on their promise or they make you jump through all kinds of hoops.

Regulatory fixes. So if a lemons market has developed, and if these market-based approaches don't
work for the particular market, then regulation might be able to help. Specifically, there are three
ways in which regulation might be able to address the problem.

First, regulation could require disclosure. It could require, say, that all widgets be labeled as high
quality or low quality, combined with penalties on the firms for lying. That gives consumers the
information that they were missing. A second approach to regulation is to have quality standards so
that no widget can be sold unless it meets some standard of quality testing, with that standard set so
that only high-quality widgets can pass the test. That would result in a market that again has only one
kind of widget, but at least it's high-quality widgets, assuming that the regulation works as intended.
The third approach is to require all sellers to issue warranties and then enforce the operation of those
warranties so that sellers are held to the promises that they make.

Any of these forms of regulation could obviously fail — it might not work as intended, might be
mis-written or misapplied, or might be burdensome on sellers. But there’s at least the possibility that
regulation of this type might help to address the market failure due to a lemons market. People who
argue for regulation of Bitcoin exchanges, for example, sometimes point to them as an example of a
lemons market.

Collusion and antitrust law. Another example of markets not operating the way we would like them
to is price fixing. Price fixing is when different sellers collude with each other and agree to raise prices
or to not lower them. A related situation is where companies that would otherwise go into
competition with each other agree not to compete. For example, if there were two bakeries in town
they might agree that one of them will only sell muffins and the other will only sell bagels, and that
way there's less competition between them than there would be if they both sold muffins and bagels.
As a result of the reduced competition presumably prices go up, and the merchants are able to foil the
operation of the market.

After all, the reason that the market protects consumers well in its normal operation is through the
vehicle of competition. Sellers have to compete in order to offer the best goods at the best price to
consumers, and if they don't compete in that way then they won't get business. An agreement to fix
prices or to not compete circumvents that competition. When people take steps that prevent
competition, that’s another kind of market failure.
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These kinds of agreements — to raise prices or to not compete — are illegal in most jurisdictions. This
is part of antitrust law or competition law. The goal of this body of law is to prevent deliberate actions
that prevent or harm competition. More generally, it limits actions other than simply offering good
products at good prices, such as attempts to reduce competition through mergers. Antitrust law is
very complicated and we’ve given you only a sketch of it, but it’s another instance of how the market
can fail and how the law can and will step in to prevent it.

7.8: New York's BitLicense Proposal

So far we’ve discussed regulation in general: different forms of regulation, why regulation might be
justified in some cases and might make good economic sense. Now let’s turn to a specific effort by a
specific state to introduce specific regulation of Bitcoin, namely New York State’s BitLicense proposal.
The information here is current as of early 2015, but the landscape of Bitcoin regulation changes
quickly. That doesn’t matter much for our purposes, because our goal isn’t so much to help you
understand a specific piece of actual or proposed regulation. Rather, we want to help you understand
the kinds of things regulators are doing and give you a sense of how they think about the problem.

The BitLicense proposal was issued in July 2014 and has since been revised in response to comments
from the Bitcoin community, industry, the public, and other stakeholders. It was issued by the New
York State Department of Financial Services, the part of the state of New York that regulates the
financial industry. Of course, the state of New York has the world’s largest financial center, and so it's
a part of the state government that is used to dealing with relatively large institutions.

Who's covered. BitLicense is a proposed set of codes, rules, and regulations that has to do with virtual
currencies. Fundamentally, it says that you’d need to get something called a BitLicense from the New
York Department of Financial Services if you wanted to do any of the things listed in the box below:

Virtual Currency Business Activity means the conduct of any one of the following types of activities
involving New York or a New York Resident:

1. receiving Virtual Currency for Transmission or Transmitting Virtual Currency, except where
the transaction is undertaken for non-financial purposes and does not involve the transfer
of more than a nominal amount of Virtual Currency;

2. storing, holding, or maintaining custody or control of Virtual Currency on behalf of others;

3. buying and selling Virtual Currency as a customer business;

4. performing Exchange Services as a customer business; or

5. controlling, administering, or issuing a Virtual Currency.

The development and dissemination of software in and of itself does not constitute Virtual
Currency Business Activity.
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The text refers to “activities involving New York or a New York Resident,” reflecting the regulatory
authority of NYDFS. Yet the impacts of regulations like these extend well beyond the borders of the
state, for two reasons. First, for states with significant populations such as New York or California,
faced with the choice between complying with state laws and not doing business with consumers in
those states, most companies will choose to comply. Second, some states are generally perceived as
leaders in regulating certain economic sectors — finance in the case of New York, technology in the
case of California. That means that other U.S. states often follow the direction that they set.

Notice the exception for non-financial uses in the first category — this was added in the second
revision, and it is a good one. It’s a carve-out for just the kind of Bitcoin-as-a-platform applications
that we’ll look at starting in Chapter 9. The second category might cover things like wallet services. As
for the third category, it appears that you can buy and sell bitcoins for yourself, but doing it as a
customer business requires a BitLicense. The fourth category is self-explanatory. The final one might
apply more to altcoins, many of which are somewhat centralized, than to Bitcoin. We'll look at
altcoins in Chapter 10.

The software-development exception at the end is again an important one. The language wasn’t in
the original version, and there was an outcry from the community. NYDFS superintendent Benjamin
Lawsky clarified soon after that the intent was not to regulate developers, miners, or individuals using
Bitcoin. The second version contains the explicit language above.

Requirements. If the regulation goes into effect and you’re one of the covered entities, you’ll have to
apply for a license. To apply for a license there's detailed language in the proposal which you can read,
but roughly speaking you have to provide information on the ownership of your enterprise, on your
finances, and insurance, on your business plan — generally to allow the NYDFS to know who you are,
how well-backed you are, where your money comes from, and what you're planning to do. And you
have to pay an application fee.

If you get a license, you’d then have to provide updated information to NYDFS about the things we
listed: ownership, finances, insurance, and so on. You'd have to provide periodic financial statements
so they could keep track of how you're doing financially. You'd be required to maintain a financial
reserve, the amount of which will be set by NYDFS based on various factors about your business.

There are detailed rules about things like how you would keep custody of consumer assets. There are
anti-money laundering rules which might or might not go beyond what’s already required by existing
laws. There are rules about having a security plan and penetration testing and so on. There are rules
about disaster recovery — you have to have a disaster-recovery plan that meets various criteria.
There are rules about record keeping — you have to keep records, and make them available to the
NYDFS under certain circumstances. You have to have written policies about compliance and you have
to designate a compliance officer —someone within your organization who's in charge of compliance
and has the necessary responsibility and authority. There's a requirement that you disclose risk to
consumers, so that consumers understand the risks of doing business with you.
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As you can see, the requirements are substantial, and they’re analogous to the sort of requirements
for a mutual fund or a publicly traded stock. The NYDFS must still decide what to do with the proposal
— whether to withdraw it, issue it in its current form, or make further modifications. Along with that
decision they'll issue some kind of a document that gives the rationale for what they decided to do.

If something like the BitLicense goes into effect, it would be a major step in the history of Bitcoin. You
would have a situation where not only NYDFS, but perhaps other jurisdictions would start to step in
and regulate, and you'd start to see Bitcoin businesses start to get closer to the traditional model of
regulated financial institutions.

This would be a step that’s in some ways contrary to the cypherpunk or cypher-libertarian ideas about
what Bitcoin should be, but on the other hand there’s a certain inevitability that as soon as Bitcoin
became really valuable, Bitcoin businesses became big businesses, and government got interested,
regulation would ensue. Bitcoin businesses touch real people and the fiat currency economy. If Bitcoin
is big enough to matter, then it is big enough to get regulated. It represents a retreat from what the
original advocates of Bitcoin had in mind, but in another way it represents the Bitcoin ecosystem
growing up and integrating into the regular economy which is much more regulated. Regardless of
your stance on it, regulation is starting to happen, and if you're interested in starting a Bitcoin
business you need to be paying attention to this trend.

Will this be a success? There are different ways to look at it, but here’s one way to evaluate the
effectiveness of regulation like BitLicense with respect to the public policy goal of improving the
guality of Bitcoin businesses: if something like BitLicense goes into effect, and if companies start
advertising to customers outside New York that they can be trusted because they have a BitLicense,
and if that argument is convincing to consumers when they’re picking a company to do business with,
then regulation will be working in the way that its advocates wanted it to. Whether that will happen
and how it will affect the future of Bitcoin is something that we'll have to wait and see.

Further reading

Two papers which contain many interesting details of how Silk Road and it successors have operated:

Christin, Nicolas. Traveling the Silk Road: A measurement analysis of a large anonymous online
marketplace. Proceedings of the 22nd International Conference on World Wide Web, 2013.

Soska, Kyle and Christin, Nicolas. Measuring the Longitudinal Evolution of the Online Anonymous
Marketplace Ecosystem. Proceedings of the 24th USENIX Security Symposium, 2015.

A guide to the regulatory issues that Bitcoin raises:

Brito, Jerry, and Andrea Castillo. Bitcoin: A primer for policymakers. Mercatus Center at George
Mason University, 2013.
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A book that looks at the history of modern cryptography and the cypherpunk movement, which gives
some intuition for the early political roots of Bitcoin:

Levy, Steven. Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age.

Penguin, 2001.

A popular exposition of early work on digital cash, combined with a vision for a world with digital
privacy:

Chaum, David. Security without identification: Transaction systems to make big brother obsolete.
Communications of the ACM, 1985.

A survey of the economics of information security which discusses several reasons for market failure:

Anderson, Ross, and Tyler Moore. The economics of information security. Science 314, no. 5799,
2006.

A discussion of Bitcoin-specific economic issues and regulatory options:

Bohme, Rainer, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bitcoin: Economics,
Technology, and Governance. The Journal of Economic Perspectives 29, no. 2, 2015.

The text of the BitLicense proposal:

New York State Department of Financial Services Regulations of the Superintendent of Financial
Services. Part 200: Virtual Currencies (revised), 2015.
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Chapter 8: Alternative Mining Puzzles

Mining puzzles are at the very core of Bitcoin because their difficulty limits the ability of any one party
to control the consensus process. Because Bitcoin miners earn rewards for the puzzles that they solve,
we expect that they’ll spend considerable effort trying to find any available shortcuts to solve these
puzzles faster or more efficiently, in the hope of increasing their profits. On the other hand, if there’s
work that helps the network but doesn't directly help them solve puzzles any faster, miners might be
incentivized to skip it to minimize their costs. So the design of the puzzle plays an important role in
steering and guiding participation in the network.

In this chapter, we're going to discuss a variety of possible alternative puzzle designs, assuming we
could modify Bitcoin’s puzzle or even design a new puzzle from scratch. A classic design challenge has
been to make a puzzle which is ASIC-resistant, leveling the playing field between users with ordinary
computing equipment and users with optimized custom hardware. What else could we design the
puzzle to achieve? What other kinds of behaviors would we like to encourage or discourage? We’'ll
talk about a few examples with various interesting properties, from decreasing energy consumption
to having some socially-useful side effects to discouraging the formation of mining pools. Some of
these are already used by altcoins, while others are research ideas that might turn out to be used in
the future.

8.1 Essential Puzzle Requirements

We’'ll start by looking at some essential security requirements for mining puzzles. It doesn't do us any
good to introduce fancy new features if the puzzle doesn't still satisfy the basic requirements that it
needs to keep Bitcoin secure.

There are many possible requirements, some of which we've talked about in Chapters 2 and 5.
Mining puzzles need to be quick to verify because every node on the network validates every puzzle
solution — even nodes that aren’t involved in mining directly, including SPV clients. We would also
like to have adjustable difficulty so that the difficulty of the puzzle can be changed over time as new
users enter the network with increasing amounts of hash power contributed. This enables the puzzle
to be difficult enough that attacks on the block chain are costly, but puzzle solutions are still found at
a fairly steady rate (about once every ten minutes in Bitcoin).

What exactly is Bitcoin’s mining puzzle? So far we’ve just called it “Bitcoin’s puzzle.” More
precisely, we can call it a partial hash-preimage puzzle, since the goal is to find preimages for a
partially specified hash output — namely, an output below a certain target value. Some other rare
property could also work, such as finding a block whose hash has at least k bits set to zero, but
comparing the output to a target is probably the simplest.
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It's easy to see how Bitcoin’s SHA-256 hash-based mining puzzle already satisfies these two
requirements. It can be made arbitrarily more difficult by tweaking a single parameter (the target).
Checking solutions is trivial, requiring just a single SHA-256 computation and a comparison, no matter
how difficult the puzzle was to solve.

Progress-freeness. Another central requirement is more subtle: the chance of winning a puzzle
solution in any unit of time should be roughly proportional to the hash power used. This means that
really large miners with very powerful hardware should only have proportional advantage in being the
next miner to find a puzzle solution. Even small miners should have some proportional chance of
being successful and receiving compensation.

To illustrate this point, let’s think about a bad puzzle that doesn't satisfy this requirement. Consider a
mining puzzle that takes exactly n steps to find a solution. For example, instead of finding a block
whose SHA-256 hash is below a certain target, we could require computing n consecutive SHA-256
hashes. This wouldn’t be efficient to check, but nevermind that for now. The bigger problem here is
that since it takes exactly n steps to find a solution, then the fastest miner in the network will always
be the one who wins the next reward. It would soon become clear which miner was solving every
puzzle, and other miners would have no incentive to participate at all.

Again, a good puzzle gives every miner the chance of winning the next puzzle solution in proportion to
the amount of hash power they contribute. Imagine throwing a dart at a board randomly, with
different size targets which correspond to the mining power held by different miners. If you think
about it, this requirement means the odds of solving the puzzle must be independent of how much
work you have already spent trying to solve it (because big miners will have always spent more work).
This is why a good mining puzzle is called progress-free.

From a mathematical perspective, this means that a good mining puzzle must be a memoryless
process — anything else would inevitably reward miners for past progress in some way. Therefore any
feasible puzzle will inherently involve some sort of trial-and-error. The time to find a solution will
therefore inevitably form an exponential distribution as we saw in Chapter 2.

Adjustable difficulty, fast verification, and progress-freeness are three crucial properties of Bitcoin
mining puzzles. SHA-256-based partial pre-image finding certainly satisfies all three. Some people
argue that other properties which Bitcoin’s mining puzzle satisfies are also essential, but we’ll discuss
other potential requirements as they come up while we explore other potential functions.

8.2 ASIC-resistant puzzles

We'll start with the challenge of designing an ASIC-resistant puzzle, which has been by far the most
widely discussed and sought after type of alternative mining puzzle. As we discussed in Chapter 5,
Bitcoin mining was initially done primarily with ordinary computers, eventually extended to GPUs and
customized FPGA devices, and now is almost exclusively done by very powerful optimized ASIC chips.
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These ASICs are so much more efficient than general purpose computing equipment that mining with
an ordinary computer (or even some early generation ASICs) is no longer worth the price of electricity,
even if the hardware is free.

This transition has meant that most individuals participating in the Bitcoin ecosystem (for example
customers or merchants transacting using Bitcoin) no longer have any role in the mining process.
Some people feel this is a dangerous development, with a smaller group of professional miners
controlling the mining process. In Satoshi Nakamoto’s original papers on Bitcoin, the phrase
“one-CPU-one-vote” was used, which has sometimes been taken to mean Bitcoin should be a
democratic system owned by all of its users.

Others feel the rise of ASICs is inevitable and not to the detriment of Bitcoin, and that the desire for
ASIC-resistance is simply people wanting to go back to “the good old days.” Without taking a side on
whether ASIC-resistance is desirable, we can dive into the technical challenges and some of the
proposed approaches for achieving this goal.

What does ASIC-resistance mean? Generally speaking, we want to disincentivize the use of
custom-built hardware for mining. Interpreting this strictly would mean designing a puzzle for which
existing general-purpose computers are already the cheapest and most efficient devices. But this
would be impossible. After all, general purpose computers already have special-purpose
optimizations. Not all products have the same optimizations and they change with time. For example,
in the past decade Intel and AMD have both added support for special instructions (often called
“adding hardware support”) to compute the AES block cipher more efficiently. So some computers
will always be less efficient than others at mining. Besides, it’s hard to imagine designing a mining
puzzle that would rely on features like the speakers and screen that most individual’s personal
computers contain. So special-purpose machines stripped of these features would still probably be
cheaper and more efficient.

So in reality our goal is a more modest one: coming up with a puzzle that reduces the gap between
the most cost-effective customized hardware and what most general-purpose computers can do.
ASICs will inevitably be somewhat more efficient, but if we could limit this to an order of magnitude or
less it might still be economical for individual users to mine with the computers they already have.

Memory-hard puzzles. The most widely used puzzles which are designed to be ASIC-resistant are
called memory-hard puzzles — puzzles that require a large amount of memory to compute, instead of,
or in addition to, a lot of CPU time. A similar but different concept is memory-bound puzzles in which
the time to access memory dominates the total computation time. A puzzle can be just memory-hard
without being memory-bound, or memory-bound without being memory-hard, or both. It’s a subtle
but important distinction arising from the fact that even if CPU speed is the bottleneck for
computation time, the cost of solving a large number of such puzzles in parallel might still be
dominated by the cost of memory, or vice versa. Typically for a computational puzzle we want
something that is memory-hard and memory-bound, ensuring that a large amount of memory is
required and this is the limiting factor.
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Why might memory-hard and memory-bound puzzles help ASIC resistance? The logical operations
required to compute modern hash functions are only a small part of what goes on in a CPU, meaning
that for Bitcoin’s puzzle, ASICs get a lot of mileage by not implementing any of the unnecessary
functionality. A related factor is that the variation in memory performance (and cost per unit of
performance) is much lower than the variation in computing speeds across different types of
processors. So if we could design a puzzle that was memory-hard, requiring relatively simple
computation but lots of memory to compute, this means that the cost of solving a puzzle would
improve at the slower rate of memory cost improvements.

SHA-256 is decidedly not memory-hard, as we’ve seen, requiring only a tiny 256-bit state which easily
fits into CPU registers. But it isn’t too difficult to design a memory-hard proof-of-work puzzle.

Scrypt. The most popular memory-hard puzzle is called scrypt. This puzzle is already widely used in
Litecoin, the second most popular cryptocurrency, and a variety of other Bitcoin alternatives.

Scrypt is a memory-hard hash function, originally designed for hashing passwords in a way that is
difficult to brute-force, so the mining puzzle is the same Bitcoin’s partial hash-preimage puzzle except
with scrypt replacing SHA-256.

The fact that scrypt existed prior to Bitcoin and has been used for password hashing gives some
confidence in its security. Password hashing has a similar goal of ASIC-resistance, because for security
we want an attacker with customized hardware to not be able to compute password hashes much
faster than the legitimate user or server, who presumably have only general-purpose computers.

Scrypt basically works in two steps. The first step involves filling a large buffer of random access
memory (RAM) with random data. The second step involves reading from (and updating) this memory
in a pseudorandom order, requiring that the entire buffer is stored in RAM.

Figure 8.1: Scrypt pseudocode

def scrypt(N, seed):
V =[0] * N // initialize memory buffer of length N

// Fill up memory buffer with pseudorandom data
V[@] = seed
for i = 1 to N:

V[i] = SHA-256(V[i-1])

// Access memory buffer in a pseudorandom order
X = SHA-256(V[N-1])
for i =1 to N:

j=X%N // Choose a random index based on X
X = SHA-256(X ~ V[j]) // Update X based on this index
return X
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Figure 8.1 shows Scrypt pseudocode. It demonstrates the core principles but we’ve omitted a few
details: in reality scrypt works on slightly larger blocks of data and the algorithm for filling up the
buffer is slightly more complex.

To see why scrypt is memory-hard, let’s imagine trying to compute the same value without using the
buffer V. This would certainly be possible — however, in line 9, we would need to recompute the
value V[j] on the fly, which would require computing j iterations of SHA-256. Because the value of j
during each iteration of the loop will be pseudorandomly chosen between 0 and N-1, this will require
about N/2 SHA-256 computations. This means computing the entire function will now take N * N/2 =
N?/2 SHA-256 computations, instead of just 2N if a buffer is used! Thus, the use of memory converts
scrypt from an O(N) function to an O(N?). It should be simple to choose N large enough that the O(N?)
is slow enough that using memory is faster.

Time-memory tradeoffs. While it would be much slower to compute scrypt without the help of a large
memory buffer, it is still possible to use less memory at the cost of slightly more computation.
Suppose that we use a buffer of size N/2 (instead of size N). Now, we could store only the values V[j] if
j is even, discarding the values for which j is odd. In the second loop, about half of the time an odd
value of j will be chosen, but this is now fairly easy to compute on the fly — we simply compute
SHA-256(V[j-1]) since V[j-1] will be in our buffer. Since this happens about half the time, it adds N/2
extra SHA-256 computations.

Thus, halving our memory requirement increases the number of SHA-256 computations by only a
quarter (from 2N to 5N/2). In general, we could store only every kth row of the buffer V, using N/k
memory and computing (k+3)N/2 iterations of SHA-256. In the limit, if we set k = N, we’re back up to
our earlier calculation where the running time becomes O(N?). These numbers don’t apply precisely
for scrypt itself, but the asymptotic estimates do.

There are alternate designs that mitigate the ability to trade off memory with time. For example, if
the buffer is continually updated in the second loop, it makes the time-memory tradeoff less effective
as the updates will have to be stored.

Verification cost. Another limitation of scrypt is that it takes as much memory to verify as it does to
compute. In order to make the memory hardness meaningful, N will need to be fairly large. This
means that a single computation of scrypt is orders of magnitude more expensive than a single
iteration of SHA-256, which is all that is needed to check Bitcoin’s simpler mining puzzle.

This has some negative consequences, as every client in the network must repeat this computation in
order to check that a claimed new block is valid. This could slow down propagation and acceptance of
new blocks and increase the risk of forks. It also means every client (even lightweight SPV clients)
must have enough memory to compute the function efficiently. As a result, the amount of memory N
which can be used for scrypt in a cryptocurrency is somewhat limited by practical concerns.
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Until recently, it wasn’t known if it was possible to design a mining puzzle that was memory-hard to
compute but fast (and memory-easy) to verify. This property is not useful for password hashing, which
had been the primary use case for memory-hard functions before their use in cryptocurrencies.

In 2014, a new puzzle called Cuckoo Cycle was proposed by John Tromp. Cuckoo Cycle is based on the
difficulty of finding cycles in a graph generated from a cuckoo hash table, a data structure which itself
was only proposed in 2001. There isn’t any known way to compute it without building up a large hash
table, but it can be checked simply by checking that a (relatively small) cycle has been found.

This might make memory-hard or memory-bound proof of work much more practical for use in
Bitcoin consensus. Unfortunately, there is no mathematical proof that this function can’t be
computed efficiently without using memory. Often, new cryptographic algorithms appear secure, but
the community is not convinced until they have been around for many years without an attack being
found. For this reason, and due to its recent discovery, Cuckoo Cycle has not been used by any
cryptocurrency as of 2015.

Scrypt in practice. Scrypt has been used in many cryptocurrencies, including several popular ones
such as Litecoin. The results have been somewhat mixed. Scrypt ASICs are already available for the
parameters chosen by Litecoin (and copied by many other altcoins). Surprisingly, the performance
improvement of these ASICs compared to general purpose computers has been equal to or larger
than that for SHA-256! Thus, scrypt was decidedly not ASIC-resistant in the end, as least as used by
Litecoin. The developers of Litecoin initially claimed ASIC-resistance was a key advantage over Bitcoin,
but have since admitted this is no longer the case.

This may be a result of the relatively low value of N (the memory usage parameter) used by Litecoin,
requiring only 128kB to compute (or less if a time-memory tradeoff is used, which was commonly
done on GPUs to get the entire buffer to fit into a faster cache). This has made it relatively easy to
design lightweight mining ASICs without a complicated memory access bus needed to access
gigabytes of RAM, as general purpose computers have. Litecoin developers didn’t choose a value that
was much higher (which would make ASICs more difficult to design) because they considered the
verification cost impractical.

Other approaches to ASIC-resistance. Recall that our original goal was simply to make it hard to build
ASICs with dramatic performance speedups. Memory-hardness is only one approach to this goal, and
there are others.

The other approaches, unfortunately, are not very scientific and have not been as rigorously designed
or attacked as memory-hard functions. The most well known is called X11, which is simply a
combination of eleven different hash functions introduced by an altcoin called Darkcoin (later
renamed DASH) and since used by several others. The goal of X11 is to make it considerably more
complicated to design an efficient ASIC as all 11 functions must be implemented in hardware. But this
is nothing more than an inconvenience for hardware designers. If an ASIC were built for X11, it would
surely make CPU and GPU mining obsolete.
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Sidebar: where did X11’s hash functions come from? From 2007 to 2012, the US National Institute
of Standards ran a competition to choose a new hash function family to be the SHA-3 standard. This
produced a large number of hash functions which were submitted as candidates, complete with
design documents and source code. While many of these candidates were shown not to be
cryptographically secure during the competition, 24 survived without any known cryptographic
attacks. X11 chose eleven of these, including Keccak, the ultimate competition winner.

Another approach which has been proposed, but not actually implemented, is to have a mining puzzle
that's a moving target. That is, the mining puzzle itself would change, just as the difficulty periodically
changes in Bitcoin. Ideally, the puzzle would change in such a way that optimized mining hardware for
the previous puzzle would no longer be useful for the new puzzle. It's unclear exactly how we would
actually change the puzzle once every so often in order to obtain the security requirements we need.
If the decision were to be made by the developers of an altcoin, it might be an unacceptable source of
centralization. For example, the developers might choose a new puzzle for which they have already
developed hardware (or just an optimized FPGA implementation), giving them an early advantage.

Perhaps the sequence of puzzles could be generated automatically, but this seems difficult as well.
One idea might be to take a large set of hash functions (say, the 24 SHA-3 candidates which were not
broken) and use each for six months to one year, too short of a time for hardware to be developed. Of
course, if the schedule were known in advance, then the hardware could simply be designed just in
time to ship for the time each function was being used.

The ASIC honeymoon. The lack of ASICs for X11 so far, even though they are clearly possible to build,
demonstrates a potentially useful pattern. Because no altcoins using X11 have a particularly high
market share, there simply hasn’t been a large enough market for anybody to build ASICs for X11 yet.
In general, designing ASICs has very high upfront costs (in both time and money) and relatively low
marginal costs per unit of hardware produced. Thus, for new and unproven cryptocurrencies, it is not
worth making an investment to build hardware if the currency might fail before the new hardware is
available for mining. Even when there is a clear market, there is a time delay before hardware units
will be ready. It took over a year for the first Bitcoin ASICs to be shipped from when they were first
designed, and this was considered to be lightning fast for the hardware industry.

Thus, any new altcoin with a new mining puzzle is likely to experience an ASIC honeymoon during
which time GPU and FGPA mining (and potentially CPU mining) will be profitable. It may not be
possible to stem the tide of ASICs forever, but there is perhaps some value in making it appealing for
individuals to participate in mining (and earn some units of the new currency) while it is
bootstrapping.

Arguments against ASIC-resistance. \We've seen that it may be impossible to achieve ASIC-resistance
in the long run. There are also arguments that it is risky to move away from the relatively proven
SHA-256 mining puzzle towards a new puzzle that might be weaker cryptographically. Furthermore,
SHA-256 mining ASICs are already being designed at close to modern limits on hardware efficiency,
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meaning the exponential growth period is probably over and SHA-256 mining will therefore offer the
most stability to the network.

Finally, there is an argument that even in the short run ASIC-resistance is a bad feature to have. Recall
from Chapter 3 that even if there is a 51% miner, many types of attack aren’t rational for them to
attempt because it could crash the exchange rate and decimate the value of the miner’s investment in
hardware since the bitcoins they earn from mining will be worth much less.

With a highly ASIC-resistant puzzle, this security argument might fall apart. For example, an attacker
might be able to rent a huge amount of generic computing power temporarily (from a service such as
Amazon’s EC2), use it to attack, and then suffer no monetary consequences as they no longer need to
rent the capacity after the attack. By contrast, with an “ASIC-friendly” puzzle, such an attacker would
inherently need to control a large number of ASICs which are useful only for mining the
cryptocurrency. Such an attacker would be maximally invested in the future success of the currency.
Following this argument to its logical conclusion, to maximize security, perhaps mining puzzles should
not only enable efficient mining ASICs to be be built, but be designed such that those ASICs are
completely useless outside of the cryptocurrency!

8.3 Proof-Of-Useful-Work

In Chapter 5 we discussed how the energy consumed (some would say wasted) by Bitcoin mining,
referred to as negative externalities by economists, is a potential concern. We estimated that Bitcoin
mining consumes several hundred megawatts of power. The obvious question is whether there is
some puzzle for which the work done to solve it provides some other benefit to society. This would
amount to a form of recycling and could help increase political support for cryptocurrencies. Of
course, this puzzle would still need to satisfy several basic requirements to make it suitable for use in
a consensus protocol.

Previous distributed computing projects. The idea of using idle computers (or “spare cycles”) for
good is much older than Bitcoin. Table 8.3 lists a few of the most popular volunteer computing
projects. All these projects have a property that might make them suitable for use as a computational
puzzle: specifically, they involve some sort of a “needle in a haystack” problem where there is a large
space of potential solutions and small portions of the search space can be checked relatively quickly
and in parallel. For example, in SETI@home volunteers are given small portions of observed radio
signals to scan for potential patterns, while in distributed.net volunteers are given a small range of
potential secret keys to test.

Volunteer computing projects have succeeded by assigning small portions of the solution space to
individuals for checking. In fact, this paradigm is so common that a specific library called BOINC
(Berkeley Open Infrastructure for Network Computing) was developed to make it easy to parcel out
small pieces of work for individuals to finish.
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In these applications, volunteers were motivated mainly by interest in the underlying problem, though
these projects also often use leaderboards for volunteers to show off how much computation they
have contributed. This has led to some attempts to game the leaderboards by reporting work that
wasn’t actually finished, requiring some projects to resort to sending a small amount of redundant
work to detect cheating. For use in a cryptocurrency, of course, the motivation is primarily monetary
and we can expect participants to attempt to cheat as much as technically possible.

Project Founded | Goal Impact
Great Internet 1996 Finding large Found the new “largest prime
Mersenne Prime Search Mersenne primes number” twelve straight times,

including 2°78%161 _ 1

distributed.net 1997 Cryptographic First successful public brute-force
brute-force demos of a 64-bit cryptographic key

SETI@home 1999 Identifying signs of Largest project to date with over 5
extraterrestrial life million participants

Folding@home 2000 Atomic-level Greatest computing capacity of
simulations of any volunteer computing project.
protein folding More than 118 scientific papers.

Table 8.3: Popular “Volunteer computing” projects

Challenges in adapting useful-proof-of-work. Given the success of these projects, we might attempt
to simply use these problems directly. For example, in the case of SETI@Home, where volunteers are
given segments of radio observations which they test for statistical anomalies, we might decide that
statistical anomalies which are rarer than some threshold are considered “winning” solutions to the
puzzle and allow any miner who finds one to create a block.

There are a few problems with this idea. First, note that potential solutions are not all equally likely to
be a winning solution. Participants might realize that certain segments are more likely to produce
anomalies than others. With a centralized project, participants are assigned work so all segments can
be analyzed eventually (perhaps with more promising segments given priority). For mining, however,
any miner can attempt any segment, meaning miners might flock to try the most likely segments first.
This could mean the puzzle is not entirely progress-free, if faster miners know they can test the most
promising segments first. Compare this to Bitcoin’s puzzle, in which any nonce is equally likely to any
other to produce a valid block, so all miners are incentivized to choose random nonces to try. The
problem here demonstrates a key property of Bitcoin’s puzzle that we previously took for granted,
that of an equiprobable solution space.
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Next, consider the problem that SETI@home has a fixed amount of data to analyze based on
observations taken by radio telescopes. It’s possible that as mining power increased, there would be
no more raw data to analyze. Compare this again to Bitcoin, in which an effectively infinite number of
SHA-256 puzzles can be created. This reveals another important requirement: an inexhaustible puzzle
space is needed.

Finally, consider that SETI@home uses a trusted, centralized set of administrators to curate the new
radio data and determine what participants should be looking for. Again, since we are using our
puzzle to build a consensus algorithm we can’t assume a centralized party to manage the puzzle. Thus,
we need a puzzle that can be algorithmically generated.

Which volunteer computing projects might be suitable as puzzles?. Returning to Figure 8.3, we can
see that SETI@home and Folding@home clearly won’t work for a decentralized consensus protocol.
Both probably lack all three properties we’ve now added to our list. The cryptographic brute-force
problems taken on by distributed.net could work, although they are typically chosen in response to
specific decryption challenges that have been set by companies looking to evaluate the security of
certain algorithms. These can’t be algorithmically generated. We can algorithmically generate
decryption challenges to be broken by brute forcing, but in a sense this is exactly what SHA-256 partial
pre-image finding already does and it serves no beneficial function.

This leaves the Great Internet Mersenne Prime Search, which turns out to be close to workable. The
challenges can be algorithmically generated (find a prime larger than the previous one) and the puzzle
space is inexhaustible. In fact, it’s infinite, since it has been proven that there are an infinite number
of prime numbers (and an infinite number of Mersenne Primes in particular).

The only real drawback is that large Mersenne Primes take a long time to find and are very rare. In
fact, the Great Internet Mersenne Prime Search has found only 14 Mersenne primes in over 18 years!
It clearly wouldn’t work to add less than one block per year to a block chain. This specific problem
appears to lack the adjustable difficulty property that we stated was essential in Section 8.1. It turns
out, however, that a similar problem involving finding prime numbers appears workable as a
computational puzzle.

Primecoin. As of this writing, the only proof-of-useful-work system deployed in practice is called
Primecoin. The challenge in Primecoin is to find a Cunningham chain of prime numbers. A
Cunningham chain is a sequence of k prime numbers p,, p,, ... p, such that p, = 2p , + 1 for each
number in the chain. That is, you take a prime number, double it and add one to get another prime
number, and continue until you get a composite number. The sequence 2, 5, 11, 23,47 is a
Cunningham chain of length 5. The potential sixth number in the chain, 95, is not prime (95 = 5-19).
The longest known Cunningham chain is of length 19 (starting at 79910197721667870187016101). It
is conjectured and widely believed, but not proven, that there exist Cunningham chains of length k for
any k.
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Now, to turn this into a computational puzzle, we need three parameters m, n, and k which we will
explain momentarily. For a given challenge x (the hash of the previous block), we take the first m bits
of x and consider any chain of length k or greater in which the first prime in the chain is an n-bit prime
and has the same m leading bits as x to be a valid solution. Note that we can adjust n and k to make
the puzzle harder. Increasing k (the required chain length) makes the problem exponentially harder,
while increasing n (the size of the starting prime) makes it linearly harder. This provides fine-tuning of
the difficulty. The value of m just needs to be large enough that trying to pre-compute solutions
before seeing the value of the previous block is infeasible.

All of the other properties we have discussed appear to be provided: solutions are relatively quick to
verify, the problem is progress-free, the problem space is infinite (assuming some well-studied
mathematical conjectures about the distribution of prime numbers are true), and puzzles can be
algorithmically generated. Indeed, this puzzle has been in use for Primecoin for almost two years and
this has produced the largest-known primes in Cunningham chains for many values of k. Primecoin
has since expanded to include additional, similar types of prime chains in its proof of work, including
“second kind” Cunningham chains in which p,=2p, , - 1.

This provides strong evidence that it is possible to make proof-of-useful-work practical in some
limited circumstances. Of course, it’s debatable the extent to which finding large Cunningham chains
is useful. It's possible that they may have some applied purpose in the future and they certainly stand
as a small contribution to our collective mathematical knowledge. Currently, however, they have no
known practical applications.

Permacoin and proof-of-storage. A different approach to proof-of-useful work is proof-of-storage
(also sometimes called proof-of-retrievability). Rather than requiring a solely computational puzzle,
what if we could design a puzzle that required storing a large amount of data to compute? If this data
were useful, then miners’ investment in mining hardware would effectively be contributing to a
widely distributed and replicated archival storage system.

We'll take a look at Permacoin, the first proposal for proof-of-storage for use in consensus. We begin
with a large file which we’ll call F. For now, let’s assume everybody agrees on the value of F and the
file will not change. For example, F might be chosen by a trusted dealer when a cryptocurrency is
launched, much as any new currency needs to agree on a genesis block to get going. This would
ideally be a file of public value. For example, experimental data collected from the Large Hadron
Collider already consists of several hundred petabytes (PB). Providing a free backup to this data would
be quite useful.

Of course, since F is a huge file most participants will not be able to store the entire file. But we
already know how to use cryptographic hash functions to ensure everybody agrees on F without
knowing the entire thing. The simplest approach would be for everybody to agree on H(F), but a
better approach is to represent F using a large Merkle tree and have all participants agree on the
value of the root. Now, everybody can agree on the value of F and it is efficient to prove that any
portion of Fis correct.
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In Permacoin, each miner M stores a random subset F,, & F. To achieve this, when the miner
generates a public key K,, which they will use to receive funds, they hash their public key to generate
a pseudorandom set of blocks F,, which they must store to be able to mine. This subset will be of
some fixed number of blocks k,. We have to assume here that there is some way for them to fetch
those blocks when they start mining — perhaps downloading them from a canonical source.

Once the miner has stored F,, locally, the puzzle is fairly similar to conventional SHA-256 mining. Given
a previous block hash x, the miner chooses a random nonce value n and hashes this to generate a
pseudorandom subset F,, < F,, consisting of k, < k, blocks. Note that this subset depends both on
the nonce they have chosen and their public key. Finally, the miner computes a SHA-256 hash of n and
the blocks in F,. If the value of this hash is below a target difficulty, they have found a valid solution.

[ Blocks in F '_
[ BlocksinF,, Root of F
@ Blocks in F,

Figure 8.4: Choosing random blocks in a file in Permacoin.
In this example k,=6 and k,=2. In a real implementation these parameters would be much larger.

Verifying a solution requires the following steps:
@ Verify that Fy., was correctly generated from the miner’s public key K,, and nonce n
@ Verify that each block of of F. is correct by verifying their path in the Merkle tree to the
globally-agreed upon root of F.
@ Verify that H(F,,, /| n) is less than the target difficulty.

It should be easy to see why solving the puzzle requires the miner to store all of F,,  locally. For each
nonce, the miner needs to test the hash of a random subset of blocks of Fuim which would be
prohibitively slow to fetch over the network from remote storage.

Unlike the case with scrypt, there are no reasonable time/memory trade-offs provided that k, is big
enough. If a miner stored only half of F, locally, and k,=20, they’d have to try a million nonces before
they found one that didn’t require any blocks to be fetched over the network. So decreasing their
storage burden by a constant factor increases their computational burden exponentially. Of course,
setting k, to be too large will not be very efficient, since k, Merkle tree paths must be transmitted and
verified in any valid solution.
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There is also a trade-off in setting k,. The smaller k, is, the less storage is needed to function as a
miner and hence mining is more democratic. However, this also means larger miners have no
incentive to store more than k, blocks of F, even if they have the ability to store more.

As usual, this is a slight simplification of the full Permacoin proposal, but this is enough to understand
the key design components. The biggest practical challenge, of course, is finding a suitably large file
that is important, public and in need of additional replication. There are also significant complexities if
the file F changes over time, as well as with adjusting the mining difficulty over time.

Long-term challenges and economics. To summarize this section, proof-of-useful-work is a very
natural goal, but it is quite challenging to achieve it given the other requirements of a good
computational puzzle for a consensus protocol. Although at least two examples are known which are
technically feasible, Primecoin and Permacoin, both carry some technical drawbacks (primarily longer
verification time of purported solutions). Furthermore, both provide fairly minor public benefits
compared to the scale of effort we’ve seen levied at Bitcoin mining with millions of dollars worth of
capital and megawatts of electricity consumed.

There is an interesting economic argument that the benefit of any proof-of-useful-work should be a
pure public good. In economics, a public good is one that is non-excludable, meaning nobody can be
prevented from using it, and non-rivalrous, meaning the good’s use by others does not affect its
value. The classic example is a lighthouse.

Some of the examples we discussed here, such as protein folding, might not be a pure public good
because some firms (such as large pharmaceutical corporations) may benefit more from increased
knowledge about protein folding than others. Essentially, mining would be cheaper for these parties
since they are gaining more benefit from the public benefits than others would be.

8.4 Nonoutsourceable Puzzles

Let’s turn to another potential design goal for alternative mining puzzles: preventing the formation of
mining pools. As we discussed in Chapter 5 and elsewhere, most Bitcoin miners mine as part of a pool
rather than independently. This has resulted in a few large pools which together represent most of
the mining power. Since each pool is operated by a central pool administrator, some feel this is a
dangerous trend away from Bitcoin’s core design principle of decentralization and can compromise its
security.

While a mining pool with a majority share is an obvious problem, any large centrally managed pool
might implement a non-default mining strategy and attack the network. Such pools are also a juicy
target for hackers to try and compromise to immediately control a large amount of mining power. The
pool operators might collude to censor transactions or enforce high transaction fees. At the very least,
having most miners in pools also means that most miners aren’t running a fully validating node.
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Interestingly, these concerns have an analogy in the realm of voting. It's illegal in the United States
and many other nations for individuals to sell their vote. Arguably participating in a pool controlled by
someone else is akin to selling your vote in the Bitcoin consensus protocol.

Technical requirements for pools. Recall that mining pools appear to be an emergent phenomenon.
There’s no evidence that Satoshi was thinking of mining pools at the time of Bitcoin’s original design.
It wasn’t apparent for a few years that efficient pools could be run between many individuals who
don’t know or trust each other.

As we saw in Chapter 5, mining pools typically work by designating a pool operator with a well-known
public key. Each of the participating miners mines as usual but sends in shares to the pool operator.
These shares are “near misses” or “partial solutions” which would be valid solutions at a lower
difficulty level. This shows the pool operator how much work the miner is performing. Whenever one
of the pool participants finds a valid block, the pool operator then distributes the rewards amongst
the pool participants based on the number of shares they have submitted. As we discussed in Chapter
5, there are many formulas for dividing the revenue up, but all mining pools follow this basic
structure.

The existence of pools thus relies on at least two technical properties of Bitcoin. The first is that it’s
easy for a miner to prove (probabilistically) how much work they are doing by submitting shares. By
choosing a low enough threshold for shares, miners can easily prove how much work they are
performing with arbitrary precision regardless of the actual difficulty of finding an valid block. This
facet of mining puzzles appears difficult to change, given that we need a puzzle that can be created
with arbitrary difficulty.

Second, pool members can easily prove to the pool operator that they're following the rules and
working to find valid blocks which would reward the pool as a whole. This works because the pool’s
public key is committed to in the coinbase transaction included in the block’s Merkle tree of
transactions. Once a miner finds a block or even a share, they can’t change which public key is the
recipient of the newly minted coins.

Block discarding attacks. There is one weakness in this scheme for implementing mining pools: there
is nothing to to enforce that participating miners actually submit valid blocks to the pool manager in
the event that they find them. Suppose that there's a pool member that's upset with a large mining
pool. They can participate in the pool by mining and submitting shares just like normal, but in the
event that they actually find a valid block that would reward the pool they simply discard it and don’t
tell the pool operator about it.

This attack reduces the pool’s overall mining power as none of the attacker’s work is contributing
towards finding valid blocks. However the attacker will still be rewarded as they appear to be
submitting valid shares and simply getting unlucky to not find any valid blocks. If the mining pool is
designed to be revenue-neutral (that is, all mining rewards are redistributed back to participants) then
this attack can cause the pool to run at a loss.

229



This attack is sometimes called a vigilante or sabotage attack and is considered a form of vandalism
because the attack appears to be costly for both the attacker and the pool. The attacker loses money
because every block they discard would have led to some proportion of the block rewards being
returned to them. Of course, the attacker still gets rewards for other puzzle solutions that are found.

It appears that a rational attacker wouldn’t employ this strategy, since they would lose money
without gaining anything tangible. It turns out (quite surprisingly) that there are cases where this
strategy can be profitable, as discussed in the box below. But in any case, we want to design an
entirely new mining puzzle formulation that ensures this strategy is always profitable.

Sidebar: block discarding attacks between pools. People assumed for years that it can’t be
profitable for a participant to discard valid blocks found on behalf of the pool. It turns out this
strategy can be profitable if one mining pool uses it to attack another. This was proposed
apocryphally many times and first thoroughly analyzed in a paper by Ittay Eyal in 2015.

Let’s consider a simple case: suppose two mining pools, A and B, each have 50% of the total mining
capacity. Now suppose B uses half of its mining power (25% of the total capacity) to mine as a
member in pool A, but discards all blocks found. We can show, in a simplified model, that B will
now earns 5/9 of the total rewards, greater than the 50% it would earn by mining normally. In this
simple case, dedicating half of its mining power to attacking can be shown to be the optimal
strategy for pool B.

The situation grows more complicated with multiple pools. Block discarding has not been observed
in practice on a large scale as of this writing. But it remains possible that in the long run, attacks like
this one will throw the viability of large mining pools into question.

Rewarding sabotage. Our design goal is to make it so that miners are incentivized to mine in a pool
but not submit valid blocks to the pool manager. Currently, only the pool manager can collect the
mining rewards because the manager requires all participants to include a specific public key in the
coinbase transaction of blocks they are mining. Proper inclusion can be easily checked in submitted
partial solutions. The pool manager is the only party that knows the private key and hence can
determine where the newly minted coins go.

But what if we required that all participants also knew the private key (and hence could redirect the
funds after mining a block?). To do this, we need a puzzle in which each solution attempt requires
knowledge of the private key in the coinbase transaction. We can change the puzzle from “find a block
whose hash is below a certain target” to “find a block for which the hash of a signature on the block is
below a certain target.” This signature must be computed using the same public key in the coinbase
transaction.

Such a puzzle leaves would-be pool operators with two untenable choices. They might distribute the
private key to all pool participants, in which case any of them can steal all of the funds. Alternately,
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they can perform the signatures on behalf of pool participants. Computing a signature is orders of
magnitude more expensive than computing a hash, however, so in this case the pool manager would
be doing the majority of the heavy lifting. It would be better for the pool manager to simply be a solo
miner.

The pros and cons of non-outsourceable mining. Since this puzzle can’t effectively be outsourced to
an untrusted participant, it makes it much more challenging, if not outright impossible, to form a
mining pool with untrusted participants. It effectively prevents all pools, even efforts like P2Pool to
make a decentralized pool without a pool manager.

There’s an argument that deploying such a puzzle might perversely lead to more centralization, not
less, because it would discourage small miners from participating due to the high variance they would
face. This would leave only large mining operations. Currently, while pools may nominally control a
large amount of mining power, it isn’t clear that they can use this to launch an attack without seeing
many of their members defect. It remains an open question which risk is worse — that of large mining
pools, or of limiting mining to operators large enough to live with a high variance.

The holy grail would be to design a consensus protocol which is “naturally” low-variance by rewarding
miners a small amount for lower-difficulty puzzles. This would mean miners don’t need to form pools
and yet small miners may still participate. Simply decreasing the average time between blocks won’t
work — it would need to be decreased by a factor of 1,000 or more for the resulting variance to be
equivalent to today’s large mining pools. But then the delay between blocks would be less than a
second and the number of stale blocks would be chaotically high. It remains an open question if there
is an alternate version of the consensus protocol which would enable easier mining puzzles without
requiring near-instantaneous broadcast of all solutions.

8.5 Proof-of-Stake and Virtual Mining

To wrap up this chapter, let’s look at the idea of replacing computational puzzles with virtual mining.
This term refers to a disparate set of approaches but they all have in common that they require only a
small expenditure of computational resources by participating miners.

Closing the loop on mining. As a thought experiment, suppose Bitcoin or another cryptocurrency
becomes the dominant form of payment globally. Miners would start with some initial holding of
cryptocurrency, use it to purchase mining equipment and electricity, consume these resources, and in
the process, acquire new cryptocurrency in the form of mining rewards. This process continually burns
energy and raw materials.
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Figure 8.5: The cycle of Bitcoin mining

Once mining hardware becomes a commodity and electricity is a commodity (as it generally already
is), no miner would have a significant advantage over any other miner in terms of how efficiently they
could convert their initial cryptocurrency holdings into mining rewards. Barring minor variations in
efficiency, whoever invests the most into mining will receive the most rewards.

The basic question motivating virtual mining is: what would happen if we removed the step of
spending money on power and equipment? After all, this process is primarily used to prove who has
invested the most in mining. Why not simply allocate mining “power” directly to all currency holders
in proportion to how much currency they actually hold?

Recall that the original goal of Bitcoin mining was to enable a form of voting on the state of the block
chain, with miners with more computing power gaining more votes. We could instead design our
“voting” system so that votes are determined by how much currency one currently holds.

Advantages of virtual mining. The primary advantage of this approach is obvious: it removes the
wasteful right half of the mining cycle from Figure 8.5, leaving us with a “closed” system as shown in
Figure 8.6.
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Figure 8.6: The virtual mining cycle

In addition to simplicity, this approach would dramatically reduce Bitcoin’s environmental footprint. It
wouldn’t reduce energy consumption to zero, because miners will always have to expend some
computational resources to communicate with the network and validate. Some virtual mining
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schemes also require a small amount of computational mining as well. But in either case, the vast
majority of the mining work performed in Bitcoin can potentially be eliminated.

Virtual mining may also reduce the trend towards centralization. Because there is no mining hardware
involved there is no concern about an ASIC advantage; all miners are able to mine as “efficiently” as
all others. Any virtual mining puzzle achieves all of the goals of ASIC-resistant puzzles.

Perhaps most importantly, virtual mining might solve the problem which we discussed in the context
of ASIC-resistant puzzles, namely that miners may not be invested in the long-term health of the
currency. Anybody who holds any bitcoins is effectively a stakeholder in the currency, and a powerful
virtual miner (such as one who holds 51% or more of all currency) is a very large stakeholder. They
have an incentive to do things that would benefit the system as a whole because it increases the value
of the coins that they hold. This argument is even stronger than the argument that a miner sitting on a
large stock of mining equipment whose value depends on the future of the currency will not behave
maliciously.

This is where the term proof-of-stake comes from. Even more than eliminating mining and saving
energy, perhaps the most fundamental motivation for virtual mining is to ensure that mining is done
by stakeholders in the currency who have the strongest incentives to be good stewards of the system.

Implementing virtual mining: Peercoin. There are many variations of virtual mining of which we’ll
describe a few of the most common ideas. We should emphasize that these ideas have not yet been
studied in a scientific and rigorous way, nor have they undergone the level of practical testing that
proof-of-work has due to Bitcoin’s popularity.

To start with, we'll consider the approach taken by Peercoin, which was launched in 2012 as the first
altcoin using proof-of-stake. Peercoin is a hybrid proof-of-work/proof-of-stake algorithm in which
“stake” is denominated by “coin-age.” The coin-age of a specific unspent transaction output is the
product of the amount held by that output and the number of blocks that output has remained
unspent. Now, to mine a block in Peercoin a miner must solve a SHA-256 based computational puzzle
just like in Bitcoin. However, the difficulty of this puzzle is adjusted down based on how much
coin-age they are willing to consume. To do this, the block includes a special “coinstake” transaction
in which some transactions are spent simply to reset their coin-age to zero. The sum of the coin-ages
consumed in the coinstake transaction decides how difficult the proof-of-work puzzle is to make a
given block valid.

It is possible for miners to mine with very little stake and a large amount of computational power, but
the difficulty formula is chosen to make it dramatically easier to find a block if some coin-age is
consumed. The effect of the computational puzzle is mainly to ensure that the process is randomized
if two miners attempt to consume a similar quantity of coin-age.

Many virtual mining altcoins have adopted slightly different designs, including Nxt, BitShares,
BlackCoin and Reddcoin. In each of these, some amount of stake is used to make a computational
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puzzle vastly easier, purportedly to the point that the computational puzzle is no longer the main
challenge in mining.

Alternate forms of stake. A couple of alternatives to this hybrid model that are worth discussing:

@ Proof-of-stake. The purest form of proof-of-stake is simply to make mining easier for those
who can show they control a large amount of currency. This is similar to Peercoin’s
proof-of-coin-age, only with age not taken into account. The downside of this approach is that
unlike coin-age which resets after successful mining, the richest participants are always given
the easiest mining puzzle.

@ Proof-of-deposit. In this formulation, when coins are used by a miner to mint a block, they
become frozen for a set number of blocks. This can be thought of as a mirror of coin-age:
instead of rewarding a miner for holding coins which have been unspent for a long time in the
past, this system rewards miners who are willing to have coins go unmoved for a long time
into the future. In both approaches, miners’ stake effectively comes from the opportunity cost
of not being able to use the coins to perform other actions.

The nothing-at-stake problem. Virtual mining is an active area of ongoing research and there are
large open problems. While a few cryptocurrencies have launched and survived using virtual mining,
they have faced the same pressure as Bitcoin to withstand motivated attackers.

The generic vulnerability of virtual mining schemes is what’s often called the nothing-at-stake
problem or stake-grinding attacks. Suppose an attacker with a proportion & < 50% of the stake is
attempting to create a fork of k blocks. As we’ve discussed previously, this attack will fail with high
probability that is exponentially increasing in k. In traditional mining, a failed attack has a significant
opportunity cost, because that miner could have been earning mining rewards during the mining
process instead of wasting mining resources on its failed attack.

With virtual mining, this opportunity cost doesn’t exist. A miner can use their stake to mine in the
current longest chain while simultaneously attempting to create a fork. If their fork succeeds, it will
have consumed a large amount of their stake. If it fails, the record of it failing will not be reflected on
the eventual longest chain.

Thus, rational miners might be constantly attempting to fork the chain. Various attempts have been
made to address this issue. Most virtual mining schemes have been much more aggressive about
using checkpointing to prevent long forks, but as discussed previously, this is a bit of an end-run
around a decentralized consensus protocol.

For Ethereum (an altcoin launched in mid 2015 that we will discuss in Chapter 10), a proposal called
Slasher allows punishment for miners who attempt to fork the chain. In Slasher, using stake to mine
requires signing the current block with the private key corresponding to the transactions making up
the miner’s stake. If a miner ever uses the same stake to sign two inconsistent chains (neither of
which is a prefix of the other), Slasher allows miners to enter these two signatures later on in the
block chain as proof of misbehavior and collect a portion of this stake as a bounty. While this appears
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to provide an effective solution, the details of the protocol are quite complicated and it has yet to be
deployed successfully.

A final countermeasure that may exist is that, as we’ve seen for traditional mining schemes, miners
may simply not have a strong incentive to attack because this would damage the system and
undermine their stake, even if the attack is successful.

Other drawbacks of virtual mining. Two other drawbacks are worth quickly mentioning. The first is
that some forms of virtual mining, even in the absence of stake-grinding, might make some types of
attacks easier because it is possible to “save up” for a burst of mining power. For example, a large
amount of coin-stake can be pooled to enable a dramatic surge of mining to, perhaps, introduce a
fork. This is possible even if a system like Slasher is used to discourage mining on two chains at once.
To discourage this type of attack, Peercoin limits the age parameter to 90 days when computing
coin-age.

A second issue is that if a miner in a virtual mining system obtains 51% of the available stake, they can
maintain it forever by only mining on top of their own blocks, essentially taking control of the block
chain. Even if new stake emerges from mining rewards and transaction fees, the 51% miner will obtain
this new stake and their share of the total stake will slowly approach 100%. In traditional mining, even
if a 51% miner exists it is always possible that some new miner will emerge with more mining
equipment and energy and reduce the majority miner. With virtual mining, it is much more difficult to
avoid this problem.

Can virtual mining actually work? Virtual mining remains somewhat controversial in the mainstream
Bitcoin community. There is an argument that security fundamentally requires burning real resources,
requiring real computational hardware and expending real electrical power in order to find puzzle
solutions. If this argument is believed, then the apparent waste of the proof of work system can be
interpreted as the cost of the security that you get. But this argument hasn’t been proven, just as the
security of virtual mining hasn’t been proven.

In summary, there are numerous things one might want to change about Bitcoin’s mining puzzle, and
this has been an area of furious research and innovation. So far, however, none of the alternatives
seems to have both demonstrated theoretical soundness and found practical adoption. For example,
even though scrypt has been a popular choice in altcoins, it hasn’t actually achieved ASIC resistance,
and its usefulness is unclear. It is entirely possible that alternative mining puzzles will find more
success in the future. After all, Bitcoin itself came after decades of failed attempts to create a
cryptocurrency and managed to hit the sweet spot between principled design and practical trade-offs.
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Chapter 9: Bitcoin as a Platform

In earlier chapters we developed the technical underpinnings of Bitcoin and saw how it can be used as
a currency. Now we’ll look at applications other than currency that we can build using Bitcoin as a
central component. Some of these rely on Bitcoin as it is today, without any modifications, and many
others would require only small modifications.

We've chosen these applications for a combination of practical usefulness and intellectual interest.
This list is not in any way exhaustive, but seeing how these applications work (or could work, since
many are only ideas or proposals) will give you insight into the many ways in which Bitcoin’s
functionality can be repurposed.

9.1. Bitcoin as an Append-Only Log

It’s helpful to think about Bitcoin as an append-only log — a data structure to which we can write new
data, and that which once we've written data, is tamper-proof and available forever. We also have a
secure notion of ordering: we can tell if one piece of data was written to the log before or after
another piece. This ordering arises from the block hash pointers, not the block timestamps — a
block’s timestamp can in fact be a lower (earlier) value than its predecessor. That’s because miners
can lie about timestamps, miners’ clocks may not be synchronized, and there is latency on the
network. That said, if a block timestamp appears to be off by more than a few hours, then other
miners will reject it, so we can rely on the timestamps being approximately correct. As we’ll see, these
properties turn out to be quite useful.

Secure timestamping. The append-only log can be used to build a secure timestamping system from
Bitcoin. We want to be able to prove that we know some value x at some specific time T. We might
not want to actually reveal x at time T. Instead we only want to reveal x when we actually make the
proof, which may be much later than T (and of course if we knew it at T, we still know it after T too).
However, once we have made the proof, we want the evidence to be permanent.

Recall from Chapter 1 that we can use hash functions to commit to data. Instead of publishing the
data x that we want to prove that we know, we can publish just the hash H(x) to the block chain. The
properties of the hash function guarantee that we can't later find some different value y with the
same value, y # x such that H(x) = H(y). We also rely on the convenient property that the hash of x
doesn’t reveal any information about x, as long as x is chosen from a distribution with high
min-entropy, that is, it is sufficiently unpredictable. If x doesn’t have this property, then we can pick a
random number r with high min-entropy and use H(r [ x) as the commitment, as we saw in Chapter 1.

The main idea is that we can publish just the hash H(r | x) at time T, and then at some point later on
we can reveal r and x. Anybody can look at the append-only log and be convinced that we must have

237



known x at the time we published H(r | x), because there is no other feasible way to have generated
that data.

Applications of timestamping. What could we do with this kind of secure timestamping? One
possible use is to prove prior knowledge of some idea. Suppose we wanted to prove that some
invention we filed a patent on was actually in our heads much earlier. We could do this by publishing
the hash of a design document or schematic when we first thought of the invention — without
revealing to anybody what the idea is. Later on, when we file our patent or when we publicize the
idea, we can publish the original documents and information and anybody can look backwards in time
and confirm we must have known it earlier when we published the commitment to it.

We can also prove that someone has else has received a message we sent them. Suppose Alice hires
Bob to perform a programming job; their contract requires Bob to submit his work to Alice by a
specific time. Both parties want to make sure that if there is a dispute later about whether Bob
submitted the work or whether the code performed to specification, they have proof of what was
submitted and when. To ensure this, they can mutually agree to publish a hash of Bob’s submitted
work signed by both parties. If either party later lies about what was submitted or when, the other
party can prove them wrong (say, in a court of arbitration) by revealing the input to the hash.

Many other interesting things can be built just from secure timestamping. There's even an entire
public-key signature scheme (called the Guy Fawkes signature scheme) that just uses hash functions
and an append-only log. It doesn't require any of the heavy-weight cryptography that’s usually used
for public-key signatures.

Attacks on Proofs-of-“Clairvoyance”. One thing that we can’t do with secure timestamping alone —
although it would be very nice if we could — is to prove clairvoyance, the ability to predict the future.
This might seem possible. The idea would be to publish a commitment to a description of an event
that’s about to occur (such as the outcome of a sporting event or of an election) and then later reveal
that information to prove we predicted the event ahead of time. But does this work?

In late 2014, during the final match of the World Cup, someone used this method to “prove” that
FIFA, the organization running the World Cup, was corrupt. After the match was over, a Twitter
account received significant attention for having tweeted about several events that occurred during
the game, timestamped before the match even began. For example, it correctly tweeted that
Germany would win in extra time and that Mario G6tze would score. Seemingly this proves that either
the owner of this Twitter account could tell the future or that the match was rigged. But in fact the
account had tweeted every possible outcome before the match started. For every player involved in
the match, there was a tweet predicting that he would score; there was a tweet for every conceivable
final score of the game; and so on (see Figure 9.1). Before the match ended, all of the false predictions
were deleted, leaving the Twitter account with only true “predictions.”

This same basic attack can be performed against any secure timestamping system. You simply commit
to a variety of possible outcomes, and then only reveal the commitments that turn out to be true. This
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means that if you actually do have the ability to predict the future and want to prove it, you must
prove that you are timestamping one specific prediction rather than that multiple predictions. If you
are publishing hash-based commitments, this is difficult to do. This is especially true in Bitcoin, since
our secure timestamping system does not tie commitments to any individual’s public identity. If you
don’t reveal them, it is easy to publish a large number of commitments and the ones you never reveal
cannot easily be traced back to you.

FIFA Corruption
Germany will win at ET

FIFA Corruption
Argentina will win in penalties

FIFA Corruption @
Gotze will score

FIFA Corruption @i
There will be a goal in the second half of ET

FIFA Corruption @fif
Kroos will score

FIFA Corruption @
Lahm will score

FIFA Corruption @
Palacio will score

Figure 9.1: A Twitter account which attempted to “prove” that the 2014 FIFA Men’s World Cup Final
was rigged by “predicting” the outcome of the match. The first, third and fourth tweets ended up

being true, the rest were deleted after the match.

Secure timestamping the old-fashioned way. Here’s a simple low-tech way to do secure
timestamping: publish the hash of your data in a newspaper, or some other media which is widely
seen by the public, by purchasing an advertisement. Archives of old newspaper issues are maintained
at libraries and online. This method provides a high degree of assurance that you knew that data on
the day the newspaper was published. Later, when you want to reveal the data you committed, you
can even take out a second advertisement to publish the data in the same newspaper.
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Figure 9.2: A timestamping service (GuardTime) that publishes hashes in a daily newspaper rather
than the Bitcoin block chain. Customers of the company can pay to have their data included in the
timestamp. Recall from Chapter 1 that we can use Merkle trees to encapsulate many pieces of data in

a single hash and still efficiently prove that any one of those pieces of data is included in the hash.

Secure timestamping in Bitcoin. If we want to use Bitcoin instead of newspapers for timestamping,
where should we place the hash commitment? Somewhere in a transaction? Or directly in a block?

The simplest solution (and the one people came up with first) is instead of sending money to the hash
of a public key, just send it to the hash of your data. This “burns” those coins, that is, makes them
unspendable and hence lost forever, since you don’t know the private key corresponding to that
address. To keep your cost down, you’d want to send a very small amount, such as one satoshi (the
minimum possible transaction value in Bitcoin).

Although this approach is very simple, the need to burn coins is a disadvantage (although the amount
burned is probably negligible compared to the transaction fees incurred). A bigger problem is that
Bitcoin miners have no way to know that the transaction output is unspendable, so they must track it
forever. The community frowns on this method for this reason.

A more sophisticated approach called CommitCoin allows you to encode your data into the private
key. Recall that in Chapter 1, we said: “With ECDSA, a good source of randomness is essential because
a bad source of randomness will likely leak your key. It makes intuitive sense that if you use bad
randomness in generating a key, the key that you generate will likely not be secure. But it’s a quirk of
ECDSA that, even if you use bad randomness just in making a signature, using your perfectly good key,
that also will leak your private key.”
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CommitCoin exploits this property. We generate a new private key that encodes our commitment and
we derive its corresponding public key. Then we send a tiny transaction (of, say, 2000 satoshi) to that
address, and then send it back in two chunks of 1000 satoshi each. Crucially, when sending it back we
use the same randomness both times for signing the transaction. This allows anyone looking at the
block chain to compute the private key, which contains the commitment, using the two signatures.

Compared to encoding your commitment in the public key, this CommitCoin avoids the need to burn
coins and for miners to track an unspendable output forever. However, it is quite complex.

Unspendable outputs. As of 2014, the preferred way to do Bitcoin timestamping is with an
OP_RETURN transaction which results in a provably unspendable output. The OP_RETURN instruction
returns immediately with an error so that this script can never be run successfully, and the data you
include is ignored. As we saw in Chapter 3, this can be used both as a proof of burn as well as to
encode arbitrary data. As of 2015, OP_RETURN allows 80 bytes of data to be pushed, which is more
than enough for a hash function output (32 bytes for SHA-256).

OP_RETURN <H(data)>

Figure 9.3: A provably “unspendable” transaction output script that embeds a data commitment

This method avoids bloat in the unspent transaction output set since miners will prune OP_RETURN
outputs. The cost of such a commitment is essentially the cost of one transaction fee. Throughout
2014, a typical transaction fee is less than a penny. The cost can be reduced even further by using a
single commitment for multiple values. As of late 2014 there are already several website services that
help with this. They collect a bunch of commitments from different users and combine them into a
large Merkle tree, publishing one unspendable output containing the Merkle tree root. This acts like a
commitment for all the data that users wanted to timestamp that day.

Illicit Content. One downside of being able to write arbitrary data into the block chain is that people
might abuse the feature. In most countries, it is illegal to possess and/or distribute some kinds of
content, notably child pornography, and penalties can be severe. Copyright laws also restrict the
distribution of some content.

Sure enough, several people have tried doing things like this to “grief” (i.e., to harass or annoy) the
Bitcoin community. For example, there have been reports of links to pornography published in the
Bitcoin block chain. The goal of these griefers is to make it dangerous to download the block chain
onto your hard drive and to run a full node, since to do so might mean storing and transmitting
material whose possession or dissemination is illegal.

There's no good way to prevent people from writing arbitrary data into the bitcoin block chain. One
possible countermeasure is to only accept Pay-to-Script-Hash transactions. This would make it a little
bit more expensive to write in arbitrary data, but it still wouldn’t prevent it outright.
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Fortunately, the law is not an algorithm. It is tempting to try to “hack” the law by technical means to
produce unexpected or unintended outcomes, but this not easy. Laws are intended to be interpreted
by humans and incorporate factors such as intent. For example, U.S. Code 2252, the section of U.S.
federal law that pertains to possession, distribution and receipt of child pornography, uses the
wording “knowingly possesses, or knowingly accesses with intent to view” when describing prohibited
activities (emphasis ours).

It is also worth noting that due to the size limitations we discussed above, data such as images
(except, perhaps, tiny ones) cannot be directly written into the Bitcoin block chain. They will either
have to be hosted externally, with only links written into the block chain, or be encoded in a
cumbersome way across multiple transactions. Finally, most Bitcoin clients do not ship with the ability
to decode and view data written into transactions, let alone data that’s encoded across multiple
transactions.

Overlay Currencies. On the positive side, since we can write whatever data we want into Bitcoin, we
can also build an entirely new currency system on top of Bitcoin without needing to develop a new
consensus mechanism. We can simply use Bitcoin as it exists today as an append-only log, and write
all of the data that we need for our new currency system directly into the Bitcoin block chain. We call
this approach an “overlay currency”. Bitcoin serves as the underlying substrate, and the data of the
overlay currency is written into the Bitcoin block chain using unspendable transaction outputs.

Of course, Bitcoin miners will not actually validate what you’re writing into the block chain, since they
don’t know (and don’t care!) whether the data you write is valid under the rules of your new
currency. Anyone can write anything in there who's willing to pay the Bitcoin transaction fees.
Instead, you must develop more complicated logic for validating transactions in the new currency, and
this logic must reside in each end-user client that participates in sending or receiving this currency.

For example, in an overlay currency miners are no longer able to reject double spends. Instead, every
user of the overlay currency has to look at the history of what’s been written in the block chain. If an
overlay transaction attempts to spend an overlay coin that has already been spent, then that second
transaction should simply be ignored. For this reason, there’s no such thing as a lightweight SPV client
for overlay currencies.

Counterparty is a prominent overlay currency. All Counterparty transactions are written into the
Bitcoin block chain. During 2014, between 0.5% and 1% of all Bitcoin transactions carried
Counterparty data. It also supports a much larger and richer feature set than Bitcoin. The idea is that
since Counterparty doesn’t have to develop a new consensus algorithm, and since Bitcoin miners
don't need to know about the Counterparty rules, they can instead focus on developing interesting
features such as smart contracts, user defined currencies, and more. The Counterparty API can be
much larger than the Bitcoin API since Bitcoin miners don't need to understand it or approve of it.

The potential to develop a new currency without having to create a new consensus system is very
appealing. You don't even need to encourage new miners to join your system, and you can add new
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features without needing to change Bitcoin. However, such systems are still reliant on Bitcoin — for
example, they are subject to the same fee requirements as other Bitcoin transactions. This approach
can also be inefficient, since nodes on the overlay currency may need to process a lot of data, since
Bitcoin nodes don’t filter these transactions for you.

9.2 Bitcoins as “Smart Property”

Now we’ll talk about using bitcoins to represent something other than a unit of currency in the Bitcoin
system.

Recall from Chapter 6 that you can trace ownership of value in the Bitcoin system over time, simply by
following the transaction graph. Keep in mind the caveat: there's no such thing as a “bitcoin” per se —
just unspent transaction outputs, which we refer to as coins. Every bitcoin has a history that anybody
can view in the block chain. A coin’s history traces all the way back to one or more coinbase
transactions in which coins were originally minted. As we said discussed earlier, this is bad for
anonymity, since you can often track ownership of coins this way.

Fungibility. This also leads to an interesting observation: bitcoins aren't fungible. In economics, a
fungible good is one where all individual units are equivalent and can be substituted for one another.
For example, gold is fungible since one ounce of (pure) gold can be substituted for any other ounce of
gold. But this isn’t always true of Bitcoin because every bitcoin is unique and has a different history.

In many contexts this history may not matter, but if the history is meaningful to someone you want to
trade with, it may mean be that your 1.0 bitcoin is not the same as their 1.0 bitcoin. Maybe they
wouldn’t be willing to exchange theirs with yours because they prefer the history of their coin to that
of your coin. For example, just as coin collectors value old coins, some day bitcoin collectors might
place special value on coins originating in the genesis block or some other early block in Bitcoin’s
history.

Smart Property. Could this non-fungibility property be useful? We've already seen why it can be bad
for privacy because of the potential for deanonymizing users. In this section we’ll look at why it can
also be useful to give meaning to the history of a bitcoin.

Let's think about what it would mean to give meaning to the history of ordinary offline physical
currency. Suppose we wanted to add metadata to offline currency. In fact, some people already do
this. For example, they like to write various messages on banknotes, often as a joke or a political
protest. This generally doesn’t affect the value of the banknote, and is just a novelty.

But what if we could have authenticated metadata attached to our currency — metadata that cannot
easily be duplicated? One way to achieve this is to include a cryptographic signature in the metadata
we write, and tie this metadata to the serial number of the banknote.
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4 )
“Bill #L.11180916G hereby grants
the holder admission to the
Yankees game on Aug 18, 2014”

Figure 9.4: An example of adding useful metadata to ordinary bank notes

What could this be used for? Say a baseball team wants to use dollar bills as tickets. This way they no
longer have to go through the hassle of printing their own tickets and making sure that no one can
print counterfeit tickets. The New York Yankees could simply assert that the dollar bill with a specific
serial number now represents a ticket to a specific game, and in a specific seat. These dollar bills
would be distributed in the same ways that paper tickets are normally distributed, such as by being
mailed to fans when they buy tickets online. Whoever is holding that note has the right to enter the
stadium, sit in the assigned seat, and watch the game, with no other questions asked. The banknote
itself is the ticket!

To add authenticity, the Yankees could use digital signatures. They’d sign a message that includes the
specific game date, the seat number, and the serial number of the bill — and stamp the message and
the signature right on the bill. A 2D barcode would be a convenient form for that data (See Figure 9.4).
Alternatively, the stadium could maintain a database that lists the serial numbers and corresponding
seat numbers for each game. They could check the database for this information when you tried to
enter the gate. This avoids the need to stamp the banknotes.

What does this buy us? Now currency can represent many things. Besides the example of a sports
ticket, there are many other applications. We inherit the anti-counterfeiting property that banknotes
already have. Governments work very hard to make sure it's difficult to duplicate a banknote! Also,
the underlying currency value of the banknote is maintained. After the fan redeems their ticket, the
banknote is perfectly usable as regular currency. It may be a problem if everybody wants to physically
stamp metadata on currency, but this problem goes away if we use the database approach.

Of course, all of the useful meaning of this new metadata is only as good as our trust in the issuer who

signed it. Someone must know that there's a specific key used to sign valid Yankees tickets — or
download the Yankees’ database — in order to recognize its value as a ticket. To anyone else, it
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would just look like a dollar bill. But that's okay. It’s actually a desirable property, since once the ticket
has fulfilled its purpose, it can go back into circulation as an ordinary dollar bill.

Colored coins. Can we do this digitally on top of Bitcoin? We’d like to keep Bitcoin’s nice features such
as the ability to transact online, fast transaction settlement, and non-reliance on a bank.

S

@ ::

Figure 9.5: Colored coins. The transaction graph shown illustrates issuance and propagation of color

The main idea is to stamp some Bitcoins with a “color”, and track that color stamp even as the coin
changes hands, just like we are able to stamp metadata onto a physical currency. A bitcoin stamped
with a color still functions as a valid bitcoin, but additionally carries this metadata.
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To achieve this, in one transaction, called the “issuing” transaction, we’ll insert some extra metadata
that declares some of the outputs to have a specific color. An example is illustrated in Figure 9.5. In
one transaction, we issue five “purple” bitcoins in one transaction output, while the other output
continues to be normal uncolored bitcoins. Someone else, perhaps with a different signing key, issues
“green” bitcoins in a different transaction. We call these colors for intuitiveness, but in practice colors
are just bit strings. The only property that matters is that coins of the same color and same value are
equivalent.

Now we have bitcoins with different colors associated with them. We can still do all the normal things
we do with bitcoin transactions. We could have another bitcoin transaction that takes several inputs:
some green coins, some purple coins, some uncolored coins, and shuffles them around. It can have
some outputs that maintain the color. There may need to be some metadata included in the
transaction to determine which color goes to which transaction output. We can split a transaction
output of four green coins into two smaller green coins. Later on we could combine multiple green
coins into one big green coin.

OpenAssets. As of 2015, the most popular proposal for implementing this in Bitcoin is called
OpenAssets. Assets are issued using a special Pay-to-Script-Hash address. If you want to issue colored
coins, you first choose a P2SH address to use. Any coin that transfers through that address and comes
in without a color will leave with the color designated by that address. For this to be meaningful,
you’d have to publicize that address somewhere. There are various exchanges that track which
addresses confer which colors onto coins. Since coins can sequentially pass through more than one
color-issuing address, they can have more than one color, and that’s fine.

Every time you have a transaction that involves colored coins, you have to insert a special marker
output. This is a provably unspendable output, similar to what we used for timestamping data
commitments. The metadata embedded in the marker output encodes details about how the
incoming color value should be divided among the different outputs.

As we noted earlier, this is compatible with Bitcoin. Since it doesn’t require changing Bitcoin, the
community of miners tends not to discourage or interfere with these schemes. It allows anybody to
declare any color they want without having to ask a central authority for the right to issue colored
coins. If there are others who understand and abide by the meaning you ascribe to the color you
issue, your colored coins may attain additional value beyond their nominal bitcoin value. For example,
if the Yankees issue colored coins, these coins will be able to function as tickets to a game provided
the stadium operators understand their meaning and let you in based on colored-coin tickets.

One disadvantage of this scheme is that we have to put in the unspendable marker output into every
transaction. This adds a bit of overhead, since we must forfeit some money every time we want to
trade a colored coin. A second disadvantage is that miners don’t check the validity of colored coins,
only the underlying bitcoins. To verify that a colored coin you receive is valid, you have to check the
entire transaction history that the coin was involved in, or trust a third party to do the checking for
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you. In particular, you can’t use a thin SPV client like you can for regular Bitcoin. That makes it harder
to use colored coins on computationally limited devices like mobile phones.

Uses of colored coins and smart property. Stock in a Company. A frequently cited motivation for
smart property is stock in a company. A company wishing to issue colored coins as stock would
publicize its issuing address, and bitcoins that are colored with this address function as shares. One
satoshi might represent one share in the company. Shareholders can then trade the stock on the
block chain without needing a centralized intermediary like a stock exchange. Of course, shareholders
will have to trust that the company will honor the shares. For example, the company may promise to
disburse dividends proportionally to each stock or to give shareholders voting power in the company’s
decisions. With traditional shares these promises are enforced legally. As of 2015, colored coins or
other block chain-based assets don’t have legal recognition in any jurisdiction.

Physical property. Another potential use is that colored coins might represent a claim to some
real-world property. For example, a colored coin could be associated with a house or a car. Maybe
you have a sophisticated car that actually tracks a specific colored coin on the block chain, and
automatically starts and drives for anybody who owns that colored coin. Then you could sell your car,
or at least transfer control of it, simply by making a single transaction in the block chain. We’ll see in
Chapter 11 how this can potentially be implemented technologically as well as the social and legal
obstacles to making it happen. But the dream of colored coins and smart property is that any
real-world property could be represented in the world of Bitcoin and transferred or traded as easily as
bitcoins themselves.

Domain Names. As a final example, consider using colored coins to perform some of the functions of
the existing Domain Name System: tracking the ownership and transfer of internet domain names as
well as the mapping of domain names to IP addresses. The domain name market has a variety of
interesting properties: there are a potentially infinite number of names, these names have widely
different values based on their memorability and other factors, and the same name might have very
different utility to different people. It is possible to use colored coins to handle domain name
registration and the functions we listed. However, supporting this application has also been the focus
of a prominent altcoin called Namecoin, which we’ll look at in detail in the next chapter. Each
approach has benefits: with colored coins you get the security of Bitcoin’s block chain whereas with
an altcoin it’s easier to implement the complex logic needed for domain name ownership, transfer,
and IP address mapping.

9.3: Secure Multi-Party Lotteries in Bitcoin

Now we're going to talk about hosting a “coin flip” game in Bitcoin. Again, we'll start off by describing
the offline version of what we're trying to build.

Alice and Bob want to bet five dollars. They both agree to the bet ahead of time and the method for
determining the winner. Bob will flip a coin in the air, and while it’s rotating Alice calls out “Heads” or
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“Tails”. When the coin lands, they both immediately have a clear understanding of who won the bet,
and they both have assurance that the outcome was random and that neither of them was able to
influence the outcome.

The sequence of steps in this ceremony as well as the physics of coin flipping play a crucial role in
convincing both parties that the game is fair. One shortcoming of this scheme is that both parties
have to be present at the same place at the same time. Also, both parties still have to trust that
whoever loses will pay up. In the online world, we’d like to be able to have a lottery that is just as
“fair”, but also solves the problem of making sure the loser pays.

At first this might seem like a rather peculiar and limited application to be studying in detail.
Amusingly, Bitcoin-based betting services such as Satoshi Dice — which rely on a trusted party, unlike
the system we’d like to design — have proven very popular, at times representing a large fraction of
all Bitcoin transactions on the network.

The real reason we want to study cryptographic coin flipping, however, is that it turns out that if we
can design a secure protocol for it, we can use those techniques to build many other interesting and
useful protocols. Cryptographers study “secure multiparty computation” where two or more mutually
untrusting parties each have some data and want to compute a result that depends on all of their
data, but without revealing the data to each other. Think of a sealed-bid auction, but without a
trusted auctioneer. Often, these computations need to be randomized, say, to break ties. Finally, we
might want the result of the computation to determine a monetary outcome in an irrevocable way.
Maybe we want to ensure that the winning bidder in the auction pays the seller; perhaps we even
want to ensure that the seller’s (smart) property being auctioned is automatically transferred to the
winning bidder. Alternatively, maybe we want to penalize parties if they deviate from the protocol.

In other words, a secure multi-party lottery is a simple setting in which to study an extraordinarily
powerful paradigm: mutually untrusting participants with sensitive inputs jointly executing a program
that has the power to manipulate not only bits, but also money.

Coin Flipping Online. The first challenge is replacing the “coin flip” mechanism with some online
equivalent. Let’s say we now have three parties, Alice, Bob, and Carol, who all want to select a
number 1, 2, or 3 with equal probability. Here’s one attempt at such a protocol. Each of them picks a
large random number — Alice chooses x, Bob y, and Carol Z. They tell each other their numbers, and
they compute the output as (x +y +z) % 3.

If all of them chose their random numbers independently, this would indeed work. But remember
that we’re doing this over the internet, and there’s no way to insist that they all send their numbers
“simultaneously”. Alice might wait until she hears Bob’s and Carol’s numbers before broadcasting
hers. If she does this, you can see how it’s trivial for her to make the final output whatever she wants.
We can’t design the protocol to convince every party that none of the other parties cheated.
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To solve this problem we can once again use hash commitments. First, each of them picks a large
random number and publishes a hash of this number. Once this is done, each of them reveals the
number they picked. The others then check that the revealed numbers hash to the values published in
the first step, and compute the final outcome from the three random numbers as shown in Figure 9.6.

Round 1:

Each party picks a large random string — Alice picks x, Bob picks y, and Carol picks z.

The parties publish H(x), H(y), H(z) respectively.

Each party checks that H(x), H(y), H(z) are all distinct values (otherwise aborts the protocol).
Round 2:

The three parties reveal their values, x, y, and z.

Each party checks that the revealed values agree with the hashes published in Round 1.

The outcome is (x +y + z) % 3.

Figure 9.6: Using hash commitments to implement a fair random number generator.
This protocol can be easily extended to support any number of parties.

The reason this protocol works is twofold. First, since the hash inputs x, y, and z are large random
numbers, no party can predict the others’ inputs after the first round. Second, if (say) Alice chooses
her input randomly as specified by the protocol, she can be sure that the final output will be random
regardless of whether or not Bob and Carol choose their inputs randomly.

Fairness. What happens if somebody fails to reveal their commitment? In round 2 of the protocaol,
suppose Carol waits until Alice and Bob have revealed their secrets. Carol, before revealing hers,
realizes that she’s going to lose if she does. So she might refuse to publish her random number — she
can claim to have forgotten it or pretend to go offline. Alice and Bob would likely be suspicious, but
they would have no good recourse.

What we'd like is a scheme where whoever makes a commitment is forced to reveal it within some
time limit. In cryptography, this property is called fairness. Bitcoin provides us with an excellent
mechanism for this.

Let’s say that Alice wants to make a timed commitment, and Bob is the only other person who is
concerned with it. First, Alice puts up a bond, in the form of a Bitcoin transaction output script that
specifies that it can be spent in one of two ways. One way is with a signed transaction from both Alice
and Bob. The other way to spend it is with a signature from just Alice, but only if she also reveals her
random number. If Alice’s random string is X, then the scriptPubkey actually contains the value H(x).

Next, Alice and Bob both sign a transaction that pays the bond to Bob (which is one of the two ways it
can be spent). Why would Alice agree to this? The transaction carries an nLockTime value that
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guarantees Bob can’t claim the bond before some time t. Since Alice plans to reveal her committed
value before then and recover the bond, it is safe for her sign this transaction.

Now if Alice leaves without revealing her value, Bob can claim the bond at time t. This doesn’t force
Alice to reveal her commitment but she will lose the entire bond that she put up. So the guarantee
that she'll reveal her secret value depends on the amount of money she's willing to put in the bond.

scriptPubKey:
OP_IF
<AlicePubKey> OP_CHECKSIGVERIFY <BobPubKey> OP_CHECKSIG
OP_ELSE
<AlicePubKey> OP_CHECKSIGVERIFY OP_HASH <H(x)> OP_EQUAL
OP_ENDIF

scriptSig for Case 1:
<BobSignature> <AliceSignature> ©

scriptSig for Case 2:
X <AliceSignature> 1

Figure 9.7: The transaction output scriptPubkey and scriptSigs used in a timed hash commitment.

How can we use this timed hash commitment to implement our secure lottery? We'll have almost the
exact same structure as before, except instead of using the simple hash commitments, we’ll use these
timed commitments. Whoever does not reveal their random value before the deadline will forfeit a
security deposit that’s used to compensate the other two players. Revealing the random value is now
simply a matter of recovering the bond by providing the correct secret input x.

This lottery scheme can be implemented on top of Bitcoin. But it’s a bit complicated and the timed
hash commitments require multiple non-standard transactions. When there are n parties in the
lottery, n* commitments are needed since each party needs to put up a bond for each other party.
The players have to escrow more money in total than they are even betting. But it is reasonable for a
small number of participants, and there are variants with better efficiency. Most importantly, it serves
as an existence proof that seemingly impossible protocols such as flipping a virtual coin over the
internet and penalizing a party for aborting the protocol are possible in the Bitcoin world.

9.4: Bitcoin as Public Randomness Source

In the last section, we showed how a group of people can jointly choose a fair random value. In this
section we'll talk about using Bitcoin to generate random values that are fair to anyone in the public.

Why would we want this? Let’s discuss a few examples of applications that already rely on public
sources of random values.
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NBA draft lottery. One example that occurs every spring in the U.S. is the NBA draft lottery. All 30
teams in the NBA get together and randomly choose — with some weighting based on how each team
performed in the previous season — the order in which teams get to select the top amateur players in
the country who are ready to turn professional. This was first done in 1985. The lottery was
conducted over live television, and involved picking envelopes after they’re shuffled in a transparent
spinning drum. This lottery generated a bit of controversy then, because the New York Knicks won in
the first year and were able to draft the highly sought-after center Patrick Ewing (an eventual member
of the Basketball Hall of Fame). Since the lottery was filmed in New York City, some fans of other
teams alleged that the process was rigged in favor of the Knicks.

There are numerous conspiracy theories for how the NBA might have rigged this process, such as the
famous “bent corner” theory suggesting that the Knicks’ envelope had its corner bent so the
commissioner could distinguish it from the others by touch. Another theory suggests the Knicks’
envelope was kept in a freezer and the commissioner simply grabbed the one cold envelope. These
theories show why it is very hard to hold a drawing like this and prove that it was fair — there are
many plausible avenues to cheat. Just think of what professional sleight-of-hand magicians can appear
to do! Even today, this lottery occurs every year and each time it leads to a variety of conspiracy
theories and rumors that the lottery isn’t a fair random drawing.

Figure 9.8: Images from the 1969 (Vietnam war) military draft lottery.

U.S. military draft lottery. A more serious example comes from 1969, when there was a conscription
lottery in the United States to determine which young men would be required to join the armed
services. Most of them were sent to fight in the Vietham War. A procedure similar to the NBA lottery
was used, carried out by several representatives from the US Congress and broadcast on live
television (Figure 9.8). They dumped small capsules labeled with each day of the year into a large
plastic drum, and then took turns reaching in with their hands to pull the numbers out. Men eligible to
be drafted were given a priority number based on the day of the year their birthday fell on. The
priority number determined the order in which they would be drafted.
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This 1969 draft was the first time this lottery procedure was used on a national scale. The goal was to
make the process more fair (by taking it out of the hands of thousands of local draft boards) and to
demonstrate to the public that it was a random process. Unfortunately, the lottery was botched.
Within a week, statisticians looking at the data noticed an anomalous pattern (illustrated in Figure
9.9). Days late in the year received low draft numbers. Though the deviation is very subtle, it is
statistically significant and very unlikely to have happened due to chance. When they went back to
review the tapes, it turned out that they rotated the drum exactly an even number of times, such that
the capsules that started out on top tended to still be on the top. There wasn't sufficient mixing to
make it a statistically random draw.

Figure 9.9: Statistical bias of the 1969 draft lottery. Day of the year (x-axis) versus lottery number
(y-axis).

What both of those examples show is that it's very hard to generate public randomness and convince
the public that you've actually done a good job. There’s a risk that the process might not be truly
random and free of influence. There’s also a risk that even if the process is random, the public won’t
believe you.

Cryptographic “Beacons”. Public displays of randomness using a wheel, flipping coins, rolling a dice,
and so on have been so popular throughout history because they’re cheap and easy to understand.
But they don’t cope so well with large-scale scenarios because they're very hard for people to audit.
Even if the video of the procedure appears legitimate, people may reasonably be suspicious that the
lottery conductor has performed some sleight of hand to rig the process.

Could we do better cryptographically? Let’s use the term “cryptographic beacon” to refer to a service
that provides a public source of randomness. The idea is that the beacon will continuously publish
new random data at a regular rate that nobody can predict in advance. Hopefully everybody agrees
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that there’s no way for anyone to predict what the beacon will output next, so everybody can rely on
it as a fair random value.

If a perfect cryptographic beacon existed, then it could be used for any of the public lotteries we
looked at. Even if you just wanted to play bingo at your local social club, you wouldn’t need to use a
large drum of numbers. If everybody trusted the beacon, you would save a lot of effort compared to
using physical displays of randomness.

Cryptographers have proposed many other applications of public randomness, including voting
systems, zero-knowledge proofs, and cut-and-choose protocols. Many of these can be done much
more simply and efficiently if you have a perfect cryptographic beacon. Unfortunately, we haven't
found a perfect way to implement such a beacon yet.

The NIST beacon. The National Institute of Standards and Technology (NIST) has, since 2011, run its
own beacon service. They claim to generate their random numbers through a complicated laboratory
setup involving two entangled photons. The idea is to provide strong guarantees that the numbers are
random because they are generated from a quantum mechanical phenomenon. If you accept the
Heisenberg Uncertainty Principle and other widely-believed laws of physics, then this should be truly
random and unpredictable. The service is set up so that it produces new random data every sixty
seconds along with a digital signature over the data. The NIST beacon provides a convenient interface
for programmatic applications: the numbers can simply be read out from a web feed.

This quantum mechanical procedure is in some sense the “limit” for physical displays of randomness.
But it does nothing to alleviate the essential problem of trust — you have to trust that NIST is in fact
carrying out the procedure as they claim. You have to trust that somewhere in a building in Maryland
NIST has their actual laboratory that produces these numbers and that they aren’t simply staging the
procedure. You also have to believe that they aren’t reserving the ability to deliberately overwrite
some of the random values before they publish them.

Other potential ways to build a beacon: natural phenomena. What about an alternate approach
where we use some natural phenomenon that everybody can observe? Perhaps we could use details
about the weather, such as what temperature it's going to be tomorrow at a specific place, or how
strong the wind will be, or whether or not it will rain. Of course, we have some ability to predict the
weather ahead of time, but not precisely, so perhaps we can use the “least significant bits” of the
measured values. The limitation here is that all participants need to be at the same place to get the
same measurements.

To avoid this we could turn to sunspots, which are bursts of activity on the surface of the sun. Another
example is cosmic background radiation, which is noise that you can listen to with a radio antenna
from any point on the planet; everybody should be able to read the same value. These are
phenomena that happen at such a large scale that it's easy to convince yourself that nobody will
succeed in rigging the process. It's far fetched to imagine that somebody would fly a spacecraft
towards the surface of the Sun in order to somehow tamper with it just to rig some lottery back on
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Earth. So these approaches have several good properties: public observability, security against
manipulation, and, in most cases, an acceptable level of unpredictability.

One problem with these approaches is that they're fairly slow. For example, if your random signal is
the daily high temperature, then you only get one reading per day. The surface of the sun doesn't
change too often. In many cryptographic applications, random bits are used as input to a
pseudorandom generator (PRG). For the PRG to be secure, the input needs to be 80 bits (or more) in
length. It might take a while for 80 bits of randomness to accumulate with sources based on weather
and astronomy.

Figure 9.10: NASA image of sunspots.

Besides, it requires expertise to measure sunspots, so you’d effectively need to rely on some trusted
observer to publish the measurements. However, there could be many trusted observers, and we can
hope that they’'d “keep each other honest”. Applications that consume beacons, or users of such
applications, could choose which of the observers they’d like to rely on. They can also easily switch
observers at any time. This property is called “trust agility” and is arguably superior to having a single
entity such as NIST that produces the beacon.

There’s a deeper problem, one that at first sight might seem trivial. How do we turn a real-world
observation — a temperature, a photograph of sunspots — into a string of bits in such a way that
every observer will end up with the same bit string? We could try quantizing the measurement: for
example, we could express the temperature in Fahrenheit and use the first decimal digit as the
beacon output. But unless every observer’s thermometer is unrealistically precise, there will be times
when some observers will read the temperature as (say) 62.7 and others will read it as 62.8. It seems
that no matter which natural phenomenon we pick and what protocol we use, there will always be
“corner cases”. For a cryptographic beacon, even a small probability of inconsistent measurements
may be unacceptable because it will cause the random bits output by a PRG to be completely
different.

Financial data. A similar idea is to use feeds of financial data such as stock market prices. Again, these
are publicly observable values. Unlike natural phenomena, they are reported as digital values, so the
problem of inconsistent observations goes away. There’s a strong reason to believe that it's very hard
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to predict the low-level fluctuation of stock prices: if you could predict within a penny what the final
price of a specific stock will be on the New York stock exchange tomorrow, you could make a lot of
profit as a day trader. Someone could try to influence the price by buying or selling the stock to drive
it to a specific value, but that has a real cost that you can’t avoid.

However, this approach also has the problem of relying on a trusted party, namely the stock
exchange. Even though the stock exchange has a strong incentive to establish that it's honest and
acting in good faith, there could still be the suspicion that they might try to change the price of a stock
by a penny (for example, by inserting their own order into the order book) if it would let them rig a
valuable lottery.

With all the approaches we’ve looked at, it seems hard to avoid having some trusted party who has
influence over some crucial part of the process.

Using Bitcoin as a Beacon. Fortunately, a theme so far of this entire book has been that Bitcoin is a
promising technology for removing centralized trust from protocols in ways we didn't previously think
were possible. Can we use Bitcoin as a random beacon? We’d like to extract random data from the
Bitcoin block chain while keeping all of the decentralized properties that make Bitcoin itself so
attractive.

Recall that miners must compute lots of random hash values while they’re attempting to find a
winning block. Perhaps this means that no one can predict or influence what the next block hash will
be without actually doing the work of mining. Of course the first several bits of any block hash will be
zero, but it turns out that under suitable assumptions, the only way to predict the remaining bits
would be to influence them by finding a winning block and selectively discarding it.

[prev: | B |1 |fereve HC) ]! prev: HC) |
I'mrkl_root: H{ ) | mrkl_root: H{ ) 4" mrkl_root: H{ ) !
|nonce: 0x7a83 ! '| nonce: 0x£77e... || 'Inonce: 0xf77e... ||
| hash:  0x0000 | || hash:  0x0000... | ! hash:  0x0000... |
Extract Extract Extract
01010001 10101000 10010100

Figure 9.11: Extracting public randomness from the hashes of blocks in the block chain.

That makes it simple to turn the block chain into a randomness beacon. For every block in the chain,
we apply a “randomness extractor” to the value of the block header. A randomness extractor, roughly
speaking, is like a hash function that is designed to squeeze all of the random entropy of the input into
the one uniformly random string. Every time a block is published, we have new beacon output.
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Evaluating the security of a Bitcoin beacon. Let’s say you’re participating in a lottery whose outcome
is determined by the output of the Bitcoin beacon for some pre-specified future block at height H in
the block chain. There are N players in this lottery, and each of them is betting B bitcoins. If you're
also a miner, you might get lucky and find a hash puzzle solution for block H. Then you have the choice
of whether or not to publish the block. If you don’t like the lottery outcome that would result from
your publishing the block you found, you can simply discard it and let the lottery be determined by
whoever else publishes block B. However, you’d forfeit the revenue that you could earn from that
block.

Let’s calculate how big the bet B needs to be for you to find the selective discarding strategy
worthwhile. You successfully find a block at block height H and realize that if you publish it, you will
definitely lose the lottery, whereas if you discard the block you’ll still have a 1/N chance of winning B
* N bitcoins. That means it will be rational to discard the block if your expected payout of 1/N * B * N
bitcoins (i.e., B bitcoins) is greater than the reward for mining a block (roughly 25 bitcoins in 2015,
ignoring transaction fees). So the attack is profitable if B > 25. In mid 2015, 25 bitcoins is worth over
5,000 U.S. dollars. So if the bet per player is under $5,000, the lottery will be secure against this attack
if the players are rational.

One of the advantages of this scheme is that it’s a fully decentralized beacon, with no central point of
trust. Compared to some other beacon proposals, it is fairly fast. It can create an output roughly every
ten minutes. It’s also useful to be able to estimate the cost to an attacker to manipulate the beacon
outputs using our simple model above.

A downside of using Bitcoin as a beacon is that its timing is somewhat imprecise. Say we want to read
the value of the beacon tomorrow at noon. We don't know exactly which block will be the latest block
at that time. Although on average a block will be published within 10 minutes before or after noon,
there is some variance. We also have to plan to tolerate a bit more delay if we want to reduce the
likelihood of the block we look at being lost in a short fork. As is usual in Bitcoin, we’d want to wait for
roughly six blocks to arrive before we believe that the beacon value has truly settled.

Another downside is that the cost of manipulating the beacon value may be too low for some
applications we care about. If we were actually running the NBA draft, where there are tens of
millions of dollars at stake, it may suddenly look worthwhile for one of the teams to start bribing
Bitcoin miners to manipulate this process. It remains an open question if we can extend this
construction to make it secure when millions of dollars are on the line.

Finally, our security evaluation ignores some real-life factors. For example, a miner who is part of a
mining pool doesn’t lose much by discarding a block, since they’re rewarded on the basis of shares
rather than blocks. For now, Bitcoin beacons are an interesting but unproven idea.

Scripting support for beacons. What if we extended Bitcoin’s scripting language with a special opcode
to read beacon values? Currently there's no way to have any randomness in Bitcoin scripts. That’s by
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design, because miners have to verify scripts and they all want to agree on whether a script is valid or
not. But if we use the beacon value, it’s a public source of verifiable randomness. We could use the
beacon to add randomness into transaction scripts that every miner could agree on.

Suppose we had one opcode that would make a random decision based on the beacon output of the
previous block. We could replace the entire complicated lottery protocol with just one script that
reads the beacon value and assigns the output to one of n keys. It wouldn't require a multi-round
protocol, security deposits, or timed hash commitments.

One drawback of this idea is that it would now be possible for miners to manipulate the lottery simply
by delaying the lottery transaction until a later block if they find that including the transaction in the
block they’re mining would cause them to lose the lottery. It no longer requires forfeiting block
rewards. It’s possible to make a variation of the beacon opcode that avoids this attack. Instead of
referring to the previous block, you specify to use the beacon value at a particular block height.

9.5: Prediction Markets and Real World Data Feeds

For the final topic of this chapter, we’ll look at how to implement a prediction market in a
decentralized way using cryptocurrencies and the related topic bringing real-world data into Bitcoin.

A prediction market allows people to come together and make bets on future events such as a sports
game or an election. Participants in a prediction market buy, sell, and trade “shares” in specific
outcomes of such events.

Team | Germany | Argentina Brazil United States England Netherlands
Pre-tournament 0.12 0.09 0.22 0.01 0.05 0.03
After group stage 0.18 0.15 0.31 0.06 0.00 0.05
Before semifinals 0.26 0.21 0.45 0.00 0.00 0.08
Before finals 0.64 0.36 0.00 0.00 0.00 0.00
Final 1 0 0 0 0 0

Table 9.12: Prices in dollars in a hypothetical prediction market for a selection of teams during the
2014 World Cup. The price of a share betting on the U.S. team to win the cup rose from 1 cent to 6
cents after U.S. performed well in the group stage. A share in Brazil rose progressively to 45 cents as
Brazil advanced into the semifinals and then lost its entire value after Brazil lost its semifinal match.
After the tournament only shares in Germany (who won the tournament) had any value.
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Let’s walk through an example that should make the concepts behind prediction markets more clear.
The 2014 World Cup was held in Brazil. Suppose there was a market where you could buy and sell
shares associated with each team, and the shares for the team that wins will ultimately be worth 1
dollar and all the other shares are worth 0. Going into the tournament, every team would start out
with some nonzero price, based on what the market believes their chances of winning are. Examples
are shown in Table 9.12 for five different teams.

In the pre-tournament phase, Germany shares are trading for about 12 cents, which means that the
market roughly believes Germany has a 12% chance of winning. As the tournament progresses, these
prices will fluctuate, reflecting how the market participants adjust their beliefs of how likely each
team is to win.

In our example, England was initially trading at five cents but went to zero after the group stage.
That’s because England was knocked out in the group stage. There's no longer any way for them to
win, and the price reflects that; their shares are now worthless. On the other hand, the U.S. team that
was initially thought to have a very poor chance of surviving the group stage turned out to do very
well. If you had thought to buy U.S. shares in the beginning when they were very cheap (one cent),
you could sell them immediately after the group stage for six cents. You’'d get back six times the
money you bet. You wouldn't have to wait until after the end of the tournament to make a profit.
Even though the U.S. team didn’t end up winning the tournament, you’d be able to profit from the
fact that you anticipated a change in beliefs about their chances of winning after their strong
performance in the group stage.

When we get to the semifinals, there are only four teams left. U.S. and England were knocked out so
their share prices have already gone to zero. Now every remaining team has a relatively high price,
and their share prices should add up to 1.0. Brazil in particular was favored to win, and thus had the
highest price. In fact, Brazil lost in the semifinals and their share price went to zero. Within the span of
a couple of hours, the market’s beliefs changed dramatically. You would have been able to profitin a
very short time frame if you were confident going in to the match that Brazil was overrated; you could
take a “short position” on Brazil and/or bet on the other teams.

Going into the finals there are only two teams left and their shares again add up to 1.0. At the very
end of the tournament, of course, the only shares that finally have any value are those of the German
team since they ended up winning.

Obviously, one way you could have made a profit would have been to buy shares in Germany at the
beginning for 12 cents and hold them all the way to to the end. This is basically how traditional sports
betting works — you place a bet before the tournament starts and collect the payout after the end of
the tournament. However, in a prediction market, there are many other ways to play and to profit.
You can invest in any team at any time, and you can profit solely on the ability to predict that people's
beliefs will change, regardless of the final outcome.
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Here's another example, this time from a real prediction market. Before the 2008 US Presidential
election, the lowa Electronic Markets allowed people to buy shares for whether Barack Obama or or
John McCain would win. In Figure 9.13, the price of Barack Obama shares is shown in blue and McCain
shown in red. You can see that as the months of the campaigning unfolded, people’s beliefs about
who would win fluctuated. But by the day before the election, Obama was given a 90% chance to win.
The market was well aware that the outcome was basically settled before votes were cast.
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Figure 9.13: The price of prediction market shares about the 2008 US Presidential election, from lowa
Electronic Markets.

Sidebar: The Power of Prediction Markets. Economists tend to be enthusiastic about prediction
markets. Information that’s relevant to forecasting future events is often widely dispersed, and
prediction markets are an excellent mechanism to aggregate that information by giving participants
a way to profit from their knowledge. Under suitable economics models, the market price of shares
can be interpreted as the probability of the outcome, although there are concerns that real
prediction markets suffer from biases. Empirically, prediction markets have held up very well
against other forecasting methods such as polling and expert panels.

However, prediction markets face many regulatory uncertainties and hurdles. Intrade was the most
popular prediction market on the internet before it ran into regulatory compliance issues in the U.S.
and shut down in 2013. Many economists were disappointed by this because they felt we lost a
valuable social tool that revealed useful information about the future.

Decentralized prediction markets. What would it take to build a decentralized prediction market?
There are a few tasks that we'll have to decentralize. We need a way of accepting money and
disbursing payouts, and we need a way of enforcing that the correct amounts are paid out according
to the outcome. We'll especially need decentralized arbitration. Arbitration is the process of asserting
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which outcomes actually happened. Most of the time, in the case of a national election or a sports
match, it’s pretty obvious who won and who lost. But there are also many gray areas. We'll also need
to decentralize the order book, which is a way for people to find counterparties to trade shares with.
We'll go through each of these challenges in order.

Let’s design a hypothetical altcoin called “Futurecoin” that has explicit support for prediction markets.
We'd need a few new transaction types that perform functions specific to prediction markets. It might
look something like Figure 9.14.

CreateMarket allows any user to create a prediction market for any event by specifying an arbitrator
(in terms of a public key) who is authorized to declare the outcome of that event, and the number of
possible outcomes. The event_id is an arbitrary string that ties together the different transactions that
refer to the same market. Futurecoin doesn’t care about what real-world event the event_id refers to,
nor what the outcomes are, and there is no way to specify these within the system. Users will have to
obtain this information from the market creator (who will typically be the same as the arbitrator).
We'll discuss different options for arbitration shortly.

Payment and settlement. BuyPortfolio lets you purchase a portfolio of shares of some event. For the
price of one futurecoin, you can buy one share in every possible outcome of the event. Suppose we’re
betting on the 2014 World Cup. There are 32 teams that could win. For one coin, you could buy 32
shares, one for each team — this is clearly “worth” exactly one coin since exactly one of the teams will
ultimately win. Any user can unilaterally create a BuyPortfolio without needing a counterparty. The
transaction essentially destroys one futurecoin provided as input by the user and creates one new
share in every outcome. There is also a transaction type to sell a portfolio, which lets you sell (or burn)
a share in every outcome to get one futurecoin back. For one futurecoin, you can buy a share in every
outcome and then you can turn a share in every outcome back into a futurecoin.

CreateMarket(event_id, arbitrator_key, num_outcomes)
create a new prediction market, specifying the arbitrator and parameters
BuyPortfolio(event_id)
purchase one share in every outcome for 1 futurecoin
TradeShares(...)
transfer shares in exchange for futurecoins
SellPortfolio(event_id)
redeem one share in every outcome for 1 futurecoin
CloseMarket(event_id, outcome_id)
close the market for the specified event by converting all shares of the specified outcome
into 1 newly minted futurecoin and destroying all shares of all other outcomes in the event
(outcome_id is an integer between 1 and num_outcomes for the event)

Figure 9.14: New transaction types in Futurecoin, a hypothetical altcoin that implements a
decentralized prediction market
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You can also trade shares for futurecoins, or one kind of share for another kind of share, as long as
you can find someone to trade with. This case is much more interesting. You could spend a futurecoin
to buy a share in every outcome, and then sell off the shares in outcomes you don’t think are likely to
occur. For the teams you don’t want to bet on, you could sell those shares to someone else who does
want to bet on that team. Once you do this, you no longer have a balanced portfolio on every team,
and you can no longer automatically redeem your portfolio for one futurecoin. Instead you have to
wait until the bet ends in order to redeem your shares — and if the team(s) you bet on didn’t win, you
might not be able to redeem them for anything at all. On the other hand, you can also profit directly
by trading. You could buy a balanced portfolio, wait for prices to change, and then sell all of the shares
directly for futurecoins, which you could then trade for Bitcoin or any other currency of your choice.

Prediction market arbitration. How can we do arbitration in a decentralized way? How can we make
assertions about who actually won so we can let people redeem their winning shares at the end? The
simplest system is to have a trusted arbitrator, which is what CreateMarket above does. Any user can
launch a market where they are the arbitrator (or designate someone else as the arbitrator). They can
create a transaction and announce that they are opening a market on the World Cup outcomes. They
will decide who won in the end, and if you trust them then you should be willing to accept their
signature on a CloseMarket transaction as evidence of the outcome.

Like in many other markets, we imagine that over time some entities will build reputations as reliable
arbitrators. Then they would have some incentive to arbitrate correctly in order to maintain their
valuable reputations. But there's always the risk that they could steal a lot of money — more than
their reputation is worth — by rigging a bet. This would be very dangerous in a prediction market. For
example, in the World Cup market, the arbitrator could assert that Argentina won, even though they
actually lost. If the arbitrator had bet heavily on Argentina themselves, then they might be able to
profit enough from it to justify ruining their reputation.

Could we have a more decentralized arbitration system? One option is to designate multiple
arbitrators, with the outcome being decided based on the majority. There are also ideas based on
voting — either by all users who hold shares in the market, or by miners of the cryptocurrency.
Proposals along these lines often propose penalizing voters for voting against the majority. But there
are many potential problems with these approaches and we simply don’t know how well they will
work in practice.

A further wrinkle is that sometimes reality is complicated. In addition to the problem of arbitrators
lying, there might be a legitimate dispute over the outcome of the event. Our favorite example is from
the 2014 Super Bowl. There’s a tradition at the Super Bow! of the winning team dumping a bucket of
Gatorade on their head coach. People like to bet on the color of the Gatorade that the winning team
uses for this celebration, and this betting has happened for two or three decades. In 2014, there were
bets taken on Yellow, Orange, and all the other colors of Gatorade. But that year, an unprecedented
outcome made it hard to settle the bet. When the Seahawks won, they dumped orange Gatorade on
their head coach, Pete Carroll. Then a little bit later, a few other players decided to do it again and
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dump another bucket of Gatorade on him. The first bucket contained orange Gatorade, and the
second bucket contained yellow Gatorade.

If you were running a prediction market where people had bet on the color of the Gatorade, how
would you handle this scenario? It's not clear if orange, yellow, or both should win. What happened in
practice with several sports betting services is that they decided it was better to lose some money in
order to maintain their reputations. As a show of good faith to their customers, they paid out
winnings to anyone who bet on ejther orange or yellow.

Of course, in a decentralized prediction market this isn’t so easy, because you can’t just create money
out of thin air to pay both sets of parties. Instead the arbitrator could split the winnings equally
among both orange and yellow. Instead of closing at a value of 1.0, both shares would close at a value
of 0.5. You could define the contract carefully to avoid this confusion, but you can’t be sure you’ve
anticipated every possibility. The lesson here is that arbitration is partly a social problem and no
technical solution is going to be perfect.

Data feeds. The idea of arbitration leads to a more general concept: extending cryptocurrencies with
a mechanism to assert facts about the real world. We call such a mechanism a data feed. A fact might
be about typical prediction-market events like who won an election, or the price of a stock or
commodity on a certain day, or any other real world data of importance. If we had such facts available
in Bitcoin, the scripting language would be able to use them as inputs. For example, a script might be
able to load the current price of copper onto the stack and make decisions based on the value.

If trusted data feeds existed, we could place — and automatically settle — bets on sports matches or
the future price of commodities. A prediction market is only one application that this would enable.
You could hedge risks in your investment portfolio by making bets against the price of stocks you own.
And you could derive a variety of financial instruments like forwards and futures that are ordinarily
traded in financial markets. Wouldn’t it be great if we could do all of this within Bitcoin?

We can separate the technical question of how to represent real-world facts in Bitcoin (or an altcoin)
from the socio-technical question of how to improve our confidence in the correctness of the feed.
We've already looked at the former question when discussing options for arbitration.

A clever way to encode data feeds into ordinary Bitcoin is called Reality Keys. In this system, the
arbitrator creates a pair of signing keys for every outcome of every event they are interested in — one
key pair for “Yes”, and one key pair for “No”. They publish the public keys when the event is first
registered, and later publish exactly one of the two private keys when the outcome is settled. If Alice
were betting against Bob that the outcome would occur, they could send their wagers to a Bitcoin
output that can either be claimed by Alice using a signature from Alice and from the “Yes” key, or
claimed by Bob using a signature from Bob and from the “No” key. This falls well short of the ideal
goal of being able to use data feed values as script inputs in arbitrary ways, but it allows simple
applications like the wager described above. Note that the arbitrator doesn’t need to know about or
get involved in the specific wager between Alice and Bob.
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Order books. The final piece of a prediction market is a decentralized order book. Once again this is a
pretty general concept, and realizing it would allow many other applications. What’s an order book?
In real prediction markets, or most financial markets, there isn’t a single market price. Instead there
are bids and asks which are listed in the order book. A bid is the highest price that anyone is willing to
buy a share for, and the ask is the lowest price that anyone is willing to sell the share for. Typically the
ask is greater than the bid (otherwise there would be two participants who would be matched up, a
trade would occur, and at least one of the orders would no longer remain in the order book). A
participant who wants to buy a share right away can do so at the ask price and a participant who
wants to sell right away can do so at the bid price. These are called “market orders” since they
execute at market price, as opposed to the “limit orders” that are recorded in the order book that
execute at the specified limit price (or better).

Traditionally this has been done in a centralized way with a single order book service (typically an
exchange) that collects all the orders. The problem, as is typical of centralized services, is that a
dishonest exchange might profit at the expense of the participants. If the exchange receives a market
buy order, they might themselves buy from the best ask before placing the order they received, then
turn around and sell the shares they just bought at a higher price, pocketing the difference. This
practice is called frontrunning. It shows up in a variety of financial settings, and it's considered a
crime. Centralized order books require legal enforcement in order to discourage frontrunning and
ensure confidence in the integrity of the system.

In a decentralized order book, we can’t rely on strong legal enforcement. But there's a clever solution,
which is to simply forget about frontrunning. Instead of declaring it a crime and defending against it,
we’ll call it a feature. The idea is that anybody can submit limit orders to miners by broadcasting
transactions, and miners can match any two orders as long as the bid is greater than or equal to the
ask. The miner simply gets to keep the difference as a form of transaction fee. Now miners have no
incentive to frontrun because frontrunning an order will never be more profitable than simply
fulfilling it and capturing the surplus.

This is an elegant way to build a decentralized order book. The main downside is the miner fees that
traders must pay. To avoid paying that fee, people might submit much more conservative orders and
may not be willing to reveal up front the best price at which they are willing to trade. This might make
the market less efficient. We don’t yet know how this kind of order book with miners matching orders
will function in practice, but it seems to be a promising idea.

In conclusion, Bitcoin as it is today can act as a platform for a variety of applications. But for some
applications Bitcoin only takes us so far. It doesn't have all the features we need for a secure
decentralized prediction market or a decentralized order book.
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But what if we could start from scratch and forget about soft forks, hard forks, and other challenges in
bolting new features on to Bitcoin? We've learned a lot since 2008 when Bitcoin first came out. Why
not design a new cryptocurrency from scratch and make everything better?

In the next chapter, we’ll look at altcoins, which are attempts to do just that. We'll talk about all the
promising ideas and the challenges to face in starting a new cryptocurrency.

Further Reading

Project pages / specifications of two of the overlay protocols we looked at:

The Counterparty protocol specification

The OpenAssets protocol

The secure multiparty lottery protocol we described is from the following paper, which is not for the
faint of heart!

Andrychowicz, Marcin, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on Bitcoin. In IEEE Security and Privacy 2014.

Papers by economists on the power of prediction markets:

Wolfers, Justin, and Eric Zitzewitz. Prediction markets. No. w10504. National Bureau of Economic
Research, 2004.

Arrow, Kenneth J. et al. The promise of prediction markets. 2008.

The prediction market design we described is from this paper, co-authored by several of the present
authors:

Clark, Jeremy, Joseph Bonneau, Edward W. Felten, Joshua A. Kroll, Andrew Miller, and Arvind
Narayanan. On Decentralizing Prediction Markets and Order Books. In Workshop on the Economics
of Information Security, 2014.
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Chapter 10: Altcoins and the Cryptocurrency Ecosystem

Bitcoin is just one component (albeit an important one) of a broader ecosystem of alternative, but
often quite similar, currencies called altcoins. In this chapter, we’ll look at altcoins and the ecosystem
of cryptocurrencies.

10.1 Altcoins: History and Motivation

Bitcoin was launched in January 2009. It wasn’t for another two years, until the middle of 2011, that
the first Bitcoin-like derived system, Namecoin, was launched. The rate of altcoin launches exploded

in 2013, and hundreds have since followed. How many are there in all? It’s impossible to provide an
exact number because it’s not clear which altcoins are worth counting. For example, if someone
announces an altcoin and perhaps release some source code, but no one has started mining or using it
yet, does that count? Other altcoins have been launched and seen some initial use, but then died very
quickly after their launch.
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Figure 10.1: Altcoins launched per month (measured by genesis block creation).

It’s also not quite clear what is an altcoin as opposed to simply another cryptographic currency. There
were, after all, various cryptocurrency proposals and systems which predate Bitcoin and these are
usually not called altcoins. Many altcoins borrow concepts from Bitcoin, often directly forking its code
base or otherwise adopting some of Bitcoin’s code. Some make only very minor modifications to
Bitcoin, such as changing the value of some parameters of the system, and continue to incorporate
changes made by Bitcoin’s developers. To date, all altcoins that we know of begin with a new genesis
block and their own alternate view of transaction history, rather than forking Bitcoin’s block chain
after a certain point in history. For our purposes, we don’t need a precise definition of an altcoin.
Instead we’ll loosely refer to any cryptocurrency launched since Bitcoin as an altcoin.
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WEe’'ll briefly mention non-altcoin systems like Ripple and Stellar: these are distributed consensus
protocols in the tradition that we looked at in Chapter 2. These systems achieve consensus in a model
where nodes have identifiers and need to be aware of each other. Bitcoin, of course, radically departs
from this model. In both Ripple and Stellar, the consensus protocol supports a payment/settlement
network, and each system has a native currency. Despite these similarities with altcoins, we don’t
consider them to be in scope for this book.

Reasons for launching altcoins. Every altcoin needs some kind of story to tell. If an altcoin can’t claim
some characteristic that distinguishes it from all of the others, there is no reason for it to exist. In the
simplest case, an altcoin simply changes some of the built-in parameters to Bitcoin. This includes
things like the average time between blocks, the block size limit, the schedule of rewards being
created, or the inflation rate of the altcoin.

There can also be more complex technical differences, which is a more interesting case. For example
there can be additions to the scripting language to express different kinds of transactions or security
properties. Mining could work differently and the consensus algorithm could be significantly different
from Bitcoin’s.

Sometimes altcoins are also launched with a theme or a sense of a community that the altcoin is
intended to support or be associated with, often giving members of this community a special role or
abilities in the altcoin. We'll look at examples of all of these later in this section.

How to launch an altcoin. Let's consider what’s involved in the process of launching an altcoin and
what happens after an altcoin is launched. As we mentioned, creating an altcoin involves creating a
new reference client, typically by forking the existing code base of some existing, more
well-established altcoin, or of Bitcoin itself. The easy part is to add in a bunch of technical features or
modified parameters you think will work out well. In fact, there was once a website called Coingen
that would automate this process for a small fee. It allowed you to specify various parameters like the
average block time and the proof-of-work algorithm you wanted, in addition to a name for your
altcoin, a 3-letter currency code, and a logo. Then at the click of a button you’d download a fork of
Bitcoin with the parameters you chose, and you (and others) could immediately start running it.

The hard part is bootstrapping adoption of your altcoin. You can fork the source code and you can
announce it publicly, but at this point nobody is using your altcoin so it has no market value (since
nobody wants the coins) and no security (since there aren’t miners yet). In Chapter 7 we saw that
there a number of stakeholders in Bitcoin: developers, miners, investors, merchants, customers, and
payment services. Eventually you’ll have to attract all these types of participants to your altcoin
economy to get it off the ground.

All of these are important and interrelated, and analogous to the challenge involved in launching any
other platform and getting it adopted. If you wanted to launch a new smartphone operating system,
say, you’d need to attract users, device manufacturers, app developers and various other
stakeholders, and each of these groups needs the others.
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Attracting miners has special importance for cryptocurrencies because without adequate hash power
behind an altcoin, security may fail badly if double-spending and forks are possible. In fact, your
altcoin might be run over entirely; we’ll look at “altcoin infanticide” later in this chapter. There isn't a
simple recipe for bootstrapping adoption, but in general miners will come once they believe the
coinbase rewards they receive will be worth the effort. To encourage this, many altcoins give early
miners greater rewards. Bitcoin, of course, pioneered this approach but some altcoins have taken a
more aggressive approach to rewarding early miners.

Getting a community of people to believe the altcoin is valuable is the most difficult trick. As we
discussed in Chapter 7, even for Bitcoin it’s not clear exactly how this process was bootstrapped as it
relies on the Tinkerbell effect. This ties back to why altcoins need a good narrative: to get off the
ground community of people need to believe that the new altcoin is really going to be valuable in the
future (and believe that others will believe it is valuable, and so on).

Given a community of people interested in obtaining an altcoin, miners will typically come (although it
might be risky if the value increases more quickly than miners can switch to begin mining the
currency). Other important elements will usually follow in turn once value is perceived-like getting
your altcoin listed on exchanges and developing various types of supporting infrastructure are useful,
ranging from an advocacy foundation to tools for exploring the block chain

Pump-and-dump scams. When the creators of an altcoin have succeed in bootstrapping a community
and a real exchange market, they have often found themselves very wealthy. That’s because they
almost certainly own a large quantity of coins — for example by being early miners before the hash
rate increases, or even “pre-mining,” which we discuss below. Once the altcoin’s exchange rate rises,
the founders will be in a position to sell off their coins if they choose to.

The possibility of getting rich has attracted entrepreneurial individuals and venture capital to altcoins,
and unsurprisingly, it has also attracted scammers. Indeed, the line between the two is sometimes a
bit blurry. A scammer might use a variety of methods to exaggerate an altcoin’s potential and drum
up interest. They may hype up its supposed technical merits, fake the appearance of grassroots
support, purchase the altcoin on the market at inflated prices, and so on.

In fact, this scam can be pulled off even by someone who is not the founder of an altcoin. They would
first need to buy up shares of some obscure altcoin, then convince the public of this coin’s supposed
undiscovered potential (i.e., “pump” the altcoin). If they succeed in inflating the price this way, they
can unload their shares and reap a profit (i.e., “dump” their coins). At this point investors will
probably become wise to the fraud and the price will plummet, with many people left holding
worthless coins. This kind of pump-and-dump fraud has long been perpetrated in mainstream finance,
using obscure, low-priced stocks, and it was common in the early days of altcoins as enthusiasm was
high and investors struggled to differentiate truly innovative altcoins from “me-too” systems with slick
marketing but no real innovation. As a result, users and investors are somewhat weary of altcoins
today.
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Initial allocation. In Bitcoin, currency is allocated to users solely through mining. But for various
reasons, altcoin developers have sought other ways of initial currency allocation in addition to mining.

Developers may “pre-mine” the currency, that is, reserve some portion of the money supply for
themselves or some other designated entity (such as a non-profit foundation with a charter to
develop the currency). The idea is that the possibility of a windfall gives developers more of an
incentive to spend time creating and bootstrapping a new cryptocurrency. Sometimes they go further
and do a “pre-sale,” where they sell these pre-mined units to other speculators for bitcoins or fiat
currency. This somewhat analogous to investing in a startup: the speculators can strike it rich if the
altcoin makes it big.

Another motivation for seeking additional methods of initial allocation is to ensure that there’s a
diverse community of early adopters who own the currency and have a stake in its success, given that
mining today is rather centralized and might lead to concentrated ownership of assets. A clever way
to enable diverse ownership is to allocate altcoin units to existing Bitcoin owners.

How can we technically design the system so that anyone who owns bitcoins can claim their share of
the altcoin, with this claim being automatically adjudicated? One option is a proof-of-burn, which we
discussed in Chapter 3: users can claim units of a new altcoin in proportion to a quantity of bitcoins
they provably destroy. The owner will commit to some data in the proof of burn, such as a special
string identifying the specific altcoin, to show that they are burning bitcoins solely to earn new units
of this specific altcoin.

Allocating altcoins via a proof-of-burn is also called a “one-way peg” or “price ceiling”. Associating one
altcoin unit to (say) one bitcoin doesn’t actually make it worth one bitcoin. It ensures instead that the
altcoin will be worth at most one bitcoin, since one bitcoin can always be cashed in for an altcoin, but
not vice versa.

Bitcoin block chain Altcoin block chain

A

BurnCoin value: v GenCoin value: v’

signed by sk, E signed by sk,

Figure 10.2: Allocating altcoins via proof-of-burn. The altcoin supports a GenCoin transaction that
takes a Bitcoin transaction as input. GenCoin is signed by the same private key that signed the
proof-of-burn (and using the same signature scheme). This ensures that the same user who burned
bitcoins also created the GenCoin. If the peg ratio is 1:1, then v’ must be no greater than v.

There’s a less heavy-handed alternative: require proving ownership of bitcoins, but not burning them,
to claim altcoins. Specifically, the altcoin would designate a Bitcoin block height (perhaps coinciding
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with the launch date of the altcoin) during which anyone who owned an unspent Bitcoin transaction
output as of that block would be able to claim a proportional amount of altcoins. In this system, there
isn’t necessarily a fixed relationship between the price of a bitcoin and the price of an altcoin, because
bitcoins aren’t being “converted” to altcoins via the proof-of-burn.

Bitcoin block chain Altcoin block chain

signed by sk, signed by sk,

A

GenCoin value: v’

Out 1: Addr B; value v,
Out 2: Addr C; value v,

Figure 10.3: Allocating altcoins by proving ownership of bitcoins. The input to GenCoin is one or
more unspent Bitcoin transaction outputs at the designated block height. It is be signed by the private
keys that control those unspent outputs, as in any normal Bitcoin transaction. Here the Bitcoin
transaction shown has two unspent transaction outputs, to addresses B and C, at the designated block
height. The owner of address B has claimed their altcoins, but the owner of address C hasn’t yet done
so. If the peg ratio is 1:1, then v’ must be no greater than v,.

Of course, to make all this happen, altcoin miners need to stay on top of the Bitcoin block chain as
well. The altcoin must specify what counts as a confirmed Bitcoin transaction. One option is to require
some fixed number of confirmations, say 6. Another option is to specify the most recent Bitcoin block
in each altcoin Block. This way, Bitcoin transactions become immediately available to spend in the
altcoin. This is analogous to the fact that within Bitcoin itself, transaction outputs can be spent in the
very next block or even in the same block. Merge mining, which we’ll discuss in the next section, is
one way to tie altcoin blocks to Bitcoin blocks.

Finally, donating already-allocated coins is another way of increasing the diversity of the currency
owners. One method is tipping: various services allow sending tips to an email address or a social
media account, which is partly a way to incentivize the recipient to learn about and have a stake in the
currency. The tipping service keeps the coins in escrow and the recipient gets a message telling them
that they have coins they can collect. The recipient can claim the coins by authenticating themselves
to the service via their email address or social media account. They'll also need to install wallet
software or enable another way to receive coins. Another donation method is a faucet: these are
services that give out a small quantity of coins to anyone who visits a site and perhaps enters an email
address.
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10.2 A Few Altcoins in Detail

Now we’re going to focus on a few of the oldest altcoins and study their features in more detail.

Namecoin. We’ve seen how Bitcoin’s block chain is a secure, global database. Once data has been
written to it, it is tamper-proof and its inclusion can be proved forever. Could we modify Bitcoin’s
design to support other applications of secure global databases, such as a naming system?

We’'ll need a few ground rules to make this database more useful for non-currency applications. First,
we agree to view data entries as name/value pairs, with names being globally unique. This allows
everyone to look up the value mapped to a name, just like a hash table or a database with a
primary-key field. To enforce the global uniqueness of names, if a name/value pair has the same

name as a previous database entry, then we view it as an update to the value rather than a new entry.

Second, we agree that only the user who initially created the entry for a particular name is allowed to
make updates to that name. We can easily enforce this by associating each name with a Bitcoin
address and requiring the update transactions to be signed by the private key for that address.

We could do all this on top of Bitcoin, just as we said in Chapter 9 that we could build any overlay
currency using Bitcoin as an append-only log. But it’s simpler to do it in an altcoin because we can
take this gentleman’s agreement and write it into the rules of the altcoin. These rules would then be
inviolable and enforced by the miners, rather than requiring each user (i.e., full node) to check the
rules for itself and independently decide what to do if they are violated. Done right, it would even
allow SPV-style proofs: a lightweight client would be able to submit a query (i.e, a name) to a server
running a full node, and the server would return a value for that name, along with a proof that the
returned value in fact the latest update for that name in the database.

That’s Namecoin in a nutshell. It’s a global name/value store where each user can register one or
more names (for a nominal fee) and then issue updates to the values of any of their names. Users can
also transfer control of their names to others. In fact, you can make a transaction that transfers your
domain to someone, and at the same time, transfers units of the Namecoin currency from them to
you. Since this is a single atomic transaction, it’s a secure way to sell your domain to someone you’ve
never met and don’t trust. As of 2015 Namecoin doesn’t support secure lightweight clients, but an
extension that supports this has been proposed.

Namecoin’s goal is to provide a decentralized version of the Domain Name System (DNS), the names
in the database being domain names and the values being IP addresses. You can’t use this by default
with an unmodified browser, but you can download a browser plugin for say Firefox or Chrome that
would allow you to type in an address like example.bit — any domain name that ends in .bit — and it
will look up the location in the Namecoin registry instead of the traditional DNS.
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Namecoin is technically interesting, and it’s also historically interesting — it was in fact the first altcoin
to be launched, in April 2011, a little over two years after Bitcoin was launched. It features “merge
mining” which we’ll discuss later in this chapter.

Namecoin isn’t used very much as of 2015. The vast majority of registered domains are taken by
“squatters,” hoping (but failing so far) to sell their names for a profit. Namecoin supporters tend to
argue that the existing DNS puts too much control over a critical component of the Internet into the
hands of a single entity. This view is popular in the Bitcoin community, as you can imagine, but it
doesn’t look like mainstream users are clamoring for an alternative to DNS, robbing Namecoin of the
killer app it needs to see significant adoption.

Litecoin. Litecoin was also launched in 2011, some time after Namecoin. For the past several years,
Litecoin has been the number one altcoin in terms of overall popularity and user base. It is also the
most widely forked codebase. In fact, it has been forked more times than Bitcoin itself.

The main technical distinction between Litecoin and Bitcoin is that Litecoin features a memory-hard
mining puzzle (based on scrypt), which we talked about in Chapter 8. When Litecoin was launched,
Bitcoin mining was in the GPU era, and so the goal of Litecoin’s use of a memory-hard mining puzzle
was GPU-resistance. When it was launched, you could still mine on Litecoin with a CPU, long after this
had become futile for Bitcoin. But since then, Litecoin hasn’t succeeded in resisting the transition to
GPU mining and then to ASICs. Each of those mining transitions took a bit longer in Litecoin than
Bitcoin, but it’s not clear if this is because Litecoin’s puzzle was actually harder to implement in
hardware or simply because Litecoin’s lower exchange rate provided less incentive to do so.

In any case, the performance improvements of ASICs compared to CPU mining are roughly similar for
Litecoin as they are for Bitcoin. In this sense, Litecoin failed in its original goal of creating a more
decentralized system by maintaining a community of CPU miners. But, importantly, this narrative still
worked for bootstrapping Litecoin — it attracted many adopters who ended up staying even after the
original premise failed. Litecoin has since explicitly changed its narrative, stating that its initial
allocation was more fair than Bitcoin’s because it resisted ASICs for longer.

Litecoin also makes a few minor parameter changes: for example blocks in Litecoin arrive four times
faster than in Bitcoin, every 2.5 minutes. Litecoin otherwise borrows as much from Bitcoin as possible.
In fact, its development has followed Bitcoin, so that as patches and improvements have been made
to Bitcoin, Litecoin has also adopted these.

Peercoin. Peercoin, sometimes called PPCoin, was launched in late 2012 and was the first altcoin to
use proof-of-stake mining. We discussed proof-of-stake mining (and Peercoin’s implementation of it)
in Chapter 8, but Peercoin is interesting to discuss for an additional, entirely different reason: its
administrators have a trusted public key which they use to assign checkpoints of “blessed” blocks
every so often. This is intended to act as a safeguard against forking attacks, but it is controversial
because the ability of the administrators to control the system means that Peercoin isn’t truly
decentralized. The checkpoint system isn’t inherent to Peercoin and could be removed in the future;
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nevertheless its existence means that we can’t infer that proof-of-stake has led to a secure system in
practice. We don’t know what would happen if this safeguard were removed.

Figure 10.4: One of several Dogecoin logos. The selling point is humor more than technical
innovation.

Dogecoin. Dogecoin has perhaps been the most colorful of all altcoins to date. It was released in late
2013, and what distinguishes it is not primarily technical (it is a close fork of Litecoin) but rather a set
of community values: tipping, generosity, and not taking cryptocurrency so seriously. Indeed, it is
named after Doge, an amusing Internet meme featuring a grammatically-challenged Shiba Inu dog.
The community has had several interesting and successful marketing campaigns such as sponsoring a
NASCAR driver and putting Dogecoin logos all over his car. They also raised over $30,000 to support
the Jamaica National Bobsled Team so that they could travel and compete in the 2014 Winter
Olympics. Amusingly, this closely mirrors the plot to the ‘90s movie Cool Runnings.

The combination of the community’s generosity, PR activities, and the inherent meme value of Doge
meant that Dogecoin became very popular in 2014. It appears many of the early adopters were
unfamiliar with cryptocurrencies prior to Dogecoin, providing a new community to bootstrap the
currency’s value without having to offer a compelling story in terms of advantage over other
currencies. Dogecoin showed that bootstrapping could be successful with a non-technical narrative.
Unfortunately, like many Internet phenomena, the popularity has not lasted and Dogecoin’s exchange
rate has since tanked.
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10.3 Relationship Between Bitcoin and Altcoins

To get a sense of the relative size or impact of different altcoins, there are a variety of metrics we can
use.

Comparing altcoins: market capitalization. Traditionally, market capitalization or market cap is a
simple method of estimating the value of a public corporation by multiplying the price of a share by
the total number of shares outstanding. In the context of altcoins, this market cap is often similarly
used to estimate the total value of the altcoin by multiplying the price of an individual unit of the
altcoin (measured, perhaps, at the most popular third party exchanges) by the total number of units
of currency of the altcoin thought to be in circulation. By this metric, Bitcoin is by far the largest — as
of 2015, it accounts for over 90% of the overall market cap of all of the cryptocurrencies combined.
The relative ranking of the other altcoins tends to vary quite a lot, but the point is that most altcoins
are comparatively tiny in terms of monetary value.

It's important not to read too much into the market cap. First, it isn’t necessarily how much it would
cost for someone to buy up all the coins in circulation. That number might be higher or lower, because
large orders will move the price of the currency. Second, even though the calculation considers only
the coins currently in circulation, we should expect that market participants factor into the exchange
rate the fact that new coins will come into circulation in the future, which further complicates the
interpretation of the number. Finally, we cannot even accurately estimate the true number of coins
currently in circulation because the owners of some coins may have lost their private keys, and we’d
have no way to know.

Comparing altcoins: mining power. If two altcoins use the same mining puzzle, we can directly
compare them by how much mining power all of the the altcoin’s miners have. This is often just called
the hash rate due to the prominence of hash-based puzzles. For example, Zetacoin is an altcoin that
uses SHA-256 mining puzzles, just as Bitcoin does, and has a network hash rate of about 5
Terahashes/second (5*10" hashes/second) as of December 2015. This number is about a
hundred-thousandth of Bitcoin’s mining power. It’s trickier to compare the mining power between
coins that use different mining puzzles because the puzzles may take different amounts of time to
compute. Besides, mining hardware specialized for one of the coins won’t necessarily usable for
mining (including attacking) the other coin.

Even for an altcoin using a completely unique mining puzzle, we can still learn something from the
relative change in mining power over time. Growth in mining power indicates either that more
participants have joined or that they have upgraded to more powerful mining equipment. Loss of
mining power usually means some miners have abandoned the altcoin and is typically an ominous
sign.
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Comparing altcoins: other indicators. There are several other indicators we can look at. Changes in an
altcoin’s exchange rate over time gives us clues about its health, and tends to correlate with changes
in its hash rate over long time periods. Exchange volume on various third-party exchanges is a
measure of activity and interest in the altcoin. On the other hand, the volume of transactions that
have been made on the altcoin’s block chain doesn’t tell us much, since it could simply be users
shuffling their own coins around in their wallet, perhaps even automatically. Finally, we can also look
at how many merchants and payment processors support the altcoin — only the most prominent
ones tend to be supported by payment processors.

The economic view of Bitcoin-altcoin interactions. The relationship between Bitcoin and altcoins is
complicated. In one sense, cryptocurrencies compete with each other, because they all offer a way to
do online payments. If there are two standards, protocols, or formats in competition that are roughly
equivalent in terms of what they offer, then one of them will usually come to dominate, because of
what economists call “network effects.”

For example, Blu-ray and HD-DVD were in fierce competition in the mid-to-late 2000s to be the
successor to the DVD format. Gradually, Blu-ray started to become more popular, in large part
because the popular PlayStation 3 console functioned as a Blu-ray player. This made Blu-ray a more
attractive format for movie studios and this popularity fed on itself: as more movies were released for
Blu-ray, more consumers bought stand-alone Blu-ray players, leading to more movie releases and so
on. Similarly, if your friends all have Blu-ray players, you’d want to buy one yourself rather than a HD
DVD player because you’d be able to easily swap movies with them. Within about two years, HD DVD
was a historical footnote.

Sidebar: who wins the race? Long before HD DVD, there have been countless examples of
technological standards which rapidly lost out to a competitor and slid into obscurity, from
Betamax analog video tapes to Russian gauge railroad tracks. If you’ve never heard of these,
network effects are the reason why. Sometimes, like in the case of Thomas Edison’s direct-current
power grid vs. Nikola Tesla’s alternating-current power grid, the winner (AC) was determined by
overwhelming technical superiority. In many other cases though, such as Betamax tapes losing to
VHS tapes, the loser may have actually been technically superior, with network effects being strong
enough to overcome a slight technological disadvantage.

This line of reasoning suggests that one cryptocurrency will dominate — presumably Bitcoin, which is
far and away the most popular one today — even if some successor systems could be argued to be
technically superior. But that would be an oversimplification. There are at least two reasons why
competition between cryptocurrencies is not as hostile as the competition between disc formats.

First, it’s relatively easy for users to convert one cryptocurrency into another, and for vendors to
accept more than one cryptocurrency, which means that multiple cryptocurrencies can more easily
coexist and thrive. In economics terms, cryptocurrencies exhibit relatively low switching costs.
Compare to DVD players, where most people really don’t want two bulky machines in their home and
can’t convert their existing library of discs if they change to a machine which plays the other format.
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Switching costs are certainly not zero for cryptocurrencies. For example, users might buy hardware
wallets which can’t be upgraded. But by and large it's easy to switch cryptocurrencies or to use more
than one at the same time.

Second, as we said earlier, many altcoins have unique features which provide a distinct reason for
existing. These altcoins shouldn’t be seen as mere substitutes for Bitcoin; they may be orthogonal, or
perhaps even complementary. Viewed this way, complementary altcoins actually increase the
usefulness of Bitcoin rather than compete with it. If Namecoin succeeds, for example, Bitcoin users
have one more useful thing they can do with their bitcoins.

But this picture of happy cooperation is also an oversimplification. Some altcoins, like Litecoin, simply
try to achieve the same functionality as Bitcoin but in a different, perhaps more efficient manner.
Even when new functionality is being offered, often those use-cases can in fact be achieved within
Bitcoin itself, albeit in a less elegant way (we’ll have more to say about this in Chapter 11). Supporters
of the do-it-on-top-of-Bitcoin model argue that having numerous altcoins divides the hash power
available and makes each currency less secure.

Supporters of altcoins argue, by contrast, that altcoins allow market forces to determine which
features are worth having, which systems are technically superior, and so on. They further argue that
having numerous altcoins limits the damage of a potential catastrophic failure of any one system.
They also point out that Bitcoin developers are highly risk averse and that adding new features to
Bitcoin via a soft or a hard fork is slow and difficult. On the other hand, it is easy to try out a new idea
via an altcoin; altcoins can be seen as a research-and-development test bed for potential Bitcoin
features.

The practical upshot is that there is some tension between supporters of Bitcoin and those of altcoins,
but also a sense of collaboration.

10.4 Merge Mining

In this section and the next, we'll set aside issues of culture, politics, and economics. Instead we'll
focus on the technical interactions between Bitcoin and altcoins.

Altcoin infanticide. As of 2015, Bitcoin’s hash power dwarfs that of any other altcoin. Indeed, there
are powerful miners and mining pools that control more mining power than entire altcoins. Such a
miner or entity could easily carry out an attack against a small altcoin (if it uses the same SHA-256
mining puzzle as Bitcoin), causing forks and general havoc which are often enough to kill the altcoin.
We call this phenomenon altcoin infanticide.

Why would anyone do this, given that they must use their valuable mining power to do so and won’t
gain a significant monetary reward? Take the case of the 2012 attack on a small altcoin called
CoiledCoin: the operator of the Bitcoin mining pool Eligius decided that CoiledCoin was a scam and an
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affront to the cryptocurrency ecosystem. So Eligius pointed its mining resources at CoiledCoin, mining
blocks that reversed days’ worth of CoiledCoin transaction history as well as mining a long chain with
empty blocks, effectively causing a denial-of service attack which prevented CoiledCoin users from
making any transactions. After a fairly short siege, users abandoned CoiledCoin, and it doesn’t exist
any more. In this example and in other altcoin infanticide attacks, the attacker is motivated by
something other than direct profit.

Merge mining. By default — say if an altcoin forks the Bitcoin source code but makes no other
changes — mining on the altcoin is exclusive. That is, you can try to solve the mining puzzle solution to
find a valid block for the altcoin or for Bitcoin, but you can’t try to solve both puzzles at once. Of
course, you can divide your mining resources to dedicate some to mining on the altcoin and some to
mining on Bitcoin. You can even divide between multiple different altcoins and you can adjust your
allocation over time, but there’s no way to get your mining power to do double duty.

With exclusive mining, network effects can make it difficult for an altcoin to bootstrap. If you wanted
to launch an altcoin and convince today’s Bitcoin miners to participate in your network, they would
have to stop mining Bitcoin (with at least some of their resources) which will mean an immediate loss
of Bitcoin mining rewards. This means your altcoin is likely to remain small in terms of hashing power
and more vulnerable to infanticide-style attacks by Bitcoin miners.

Can we design an altcoin so that it’s possible to mine blocks both on the altcoin and on Bitcoin at the
same time? To do that we need to create blocks that include transactions from both Bitcoin and the
altcoin, making them valid in both block chains. It’s easy to design the altcoin so that it allows Bitcoin
transactions in its blocks, because we can write the rules of the altcoin however we want. The reverse
is harder. Where can we put altcoin transactions in Bitcoin blocks? In Chapter 3 and later in Chapter 9
we’ve seen how to put arbitrary data into Bitcoin blocks, but the bandwidth of these methods is very
limited.

There’s a trick, though: even if we can’t put the contents of the altcoin’s transactions into Bitcoin
blocks, we can put a summary of the altcoin transactions into Bitcoin blocks in the form of a hash
pointer to the altcoin block. Finding a way to put a single hash pointer into each Bitcoin block is easy.
Specifically, recall that each Bitcoin block has a special transaction called the coinbase transaction
which is where the miner creates new coins as a block reward. The scriptSig field of this transaction
has no significance and can therefore be used to store arbitrary data (there’s no need to sign the
Coinbase transaction since it’s not spending any previous transaction outputs). So in a merge-mined
altcoin, the mining task is to compute Bitcoin blocks whose Coinbase scriptsig contains a hash pointer
to an altcoin block.

This block can now do double-duty: to Bitcoin clients, it looks just like any other Bitcoin block, with a
hash in the coinbase transaction that can be ignored. Altcoin clients know how to interpret the block
by ignoring the Bitcoin transactions and looking at the altcoin transactions committed to by the hash
in the coinbase transaction. Note that while this doesn’t require any changes to Bitcoin, it does
require the altcoin to specifically understand Bitcoin and accept merge-mined blocks.
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If our altcoin is merge-mined, we hope that many Bitcoin miners will mine it, because doing so doesn’t
require any additional hash power. It requires a modicum of additional computational resources for
processing blocks and transactions, and miners need to know and care enough about our altcoin to
even bother to mine it. Let’s say 25% of Bitcoin miners by hash power are mining our altcoin. This
means that on average 25% of Bitcoin blocks contain pointers to altcoin blocks. It seems, then, that in
our altcoin a new block would be mined on average every 40 minutes. Worse, while the altcoin is still
being bootstrapped and the fraction of Bitcoin miners mining it is very small, the time between blocks
will be hours or days, which is unacceptable.

Can we ensure that blocks of a merge-mined altcoin are created at a steady rate, as high or low as we
want, irrespective of the fraction of Bitcoin miners mining it? The answer is yes. The trick is that even
though the mining task for the altcoin is the same as that of Bitcoin, the mining target need not be.
The altcoin network computes the target and difficulty for its blocks independently of the Bitcoin
network. Just as Bitcoin adjusts its mining target so that blocks are found every 10 minutes on
average, the altcoin would adjust its own target so that blocks in the altcoin are found every 10
minutes, or any other fixed value.

|
|
)

Altcoin blocks

Bitcoin blocks mined by altcoin merge-miners
. Bitcoin blocks mined by non-altcoin miners
Attempted Bitcoin blocks found by altcoin merge-miners that met the altcoin’s difficulty
target but not Bitcoin’s target
Figure 10.5: merge mining.

This means that the altcoin’s target will typically be much less than Bitcoin’s target, and some (or even
most) altcoin blocks will not be pointed to by valid Bitcoin blocks. But that’s okay! You should think of
the Bitcoin block chain and the altcoin block chain as two parallel chains, with occasional pointers
from a Bitcoin block to an altcoin block. This is illustrated in Figure 10.5. In this example, 60% of
Bitcoin miners mine the altcoin, and the altcoin’s time-between-blocks is 5 minutes. This means that
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the altcoin’s difficulty is 60% * 5 / 10 = 30% that of Bitcoin. Note that 40% of Bitcoin blocks do not
contain hash pointers to altcoin blocks.

Conversely, every valid altcoin block results from an attempt at mining a Bitcoin block, but only 30%
of them actually meet Bitcoin’s difficulty target. For the other 70% of altcoin blocks, the altcoin
network needs to be able to verify the mining puzzle solution. The simple way to do this is to
broadcast the Bitcoin near-block in addition to the altcoin block. But a cleverer way is to broadcast
just the header of the Bitcoin near-block and the Merkle proof of inclusion of the Coinbase transaction
in the Bitcoin block.

It’s also possible (although rarely seen) for the altcoin to actually have a more difficult puzzle than
Bitcoin. This is unusual because most altcoins want to have blocks found more often than once per 10
minutes, but if for some reason you wanted a slower rate this would be easy to achieve as well. In this
case, you would see some Bitcoin blocks which the miner hoped would also be an altcoin block, but
will be rejected on the altcoin network because they didn’t meet the harder difficulty target.

Finally, note that any number of altcoins can be simultaneously merge-mined with Bitcoin, and every
miner is free to pick an arbitrary subset of altcoins to merge mine. In this case, the Coinbase scriptSig
would itself be a Merkle tree of hash pointers to various altcoin blocks. Note the levels of complexity:
verifying the inclusion of an altcoin transaction requires verifying, among other things: (1) a Merkle
proof of inclusion of the altcoin transaction in the altcoin block (2) a Merkle proof of inclusion of the
altcoin block hash in the Coinbase scriptSig and (3) a Merkle proof of inclusion of the Coinbase
scriptSig in the Bitcoin block or near-block!

Merge mining and security. Merge mining is a mixed blessing. It makes bootstrapping easier, as
we've discussed, and the resulting boost to your altcoin’s total hash power increases its resilience to
attack. An adversary who is looking to buy computing power to destroy your altcoin will need to make
an enormous up-front investment.

On the other hand, one could argue that this is a false sense of security, because such an adversary
would presumably recoup the cost of his investment by mining Bitcoin, and the marginal cost to
attack your altcoin is trivial. This is easier to appreciate if we think about an adversary who is already a
large Bitcoin miner. Indeed, CoiledCoin, the altcoin described earlier that suffered infanticide, was
merge-mined. The Eligius mining pool and its participants did not need to stop Bitcoin mining in order
to attack it. In fact, the pool participants were not even aware that their computing resources were
being used in the attack!

Sidebar: trends in altcoin mining puzzles. As of 2015 few altcoins launch with the same SHA-256
mining puzzle as Bitcoin, with or without merge mining, which suggests that it is perhaps
considered a security risk. Scrypt is a much more popular choice, which makes Bitcoin ASICs useless
for mining or attacking such altcoins. Of course, scrypt ASICs being manufactured for Litecoin
mining could be used to attack them.
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When we think about a rational miner deciding whether or not to merge mine, we find more
problems with the security of merge mining. Recall that roughly speaking, mining makes sense if the
expected reward equals or exceeds the expected costs. For Bitcoin mining, the cost is primarily that of
hash computation. But for someone who's already a Bitcoin miner deciding whether or not to merge
mine an altcoin, there is no additional cost from hashing. Instead, the additional costs arise from two
factors: the computation, bandwidth, and storage needed to validate the altcoin transactions, and
need to keep software up to date and perhaps make informed decisions if the altcoin is undergoing
hard or soft forks.

This reasoning yields two insights. First, merge mining has strong economies of scale, because all
miners incur roughly the same costs regardless of their hash power. This is in stark contrast to Bitcoin
where cost is proportional to hash power, to a first approximation. So for a low-value altcoin, a small
solo miner will find it unprofitable to merge mine it because the cost exceeds the meager reward they
will make due to their low hash power. Keep in mind that as of 2015, the potential revenue from
mining altcoins remains a small fraction of Bitcoin mining revenue. This predicts that compared to
Bitcoin, merge-mined altcoins will have a greater centralization or concentration of mining power.

A related prediction is that most miners will choose to outsource their transaction validation. The
smaller the altcoin, the greater the incentive to outsource. The natural way to do this is to join a
Bitcoin mining pool. That’s because pools typically take those computations out of miners’ hands. The
pool operator assembles a Bitcoin block that incorporates blocks from (zero or more) altcoins, after
validating the transactions in the Bitcoin block as well as all those altcoin blocks. The miner merely
tries to solve for the nonce. These predictions are borne out in practice. For example, GHash.IO, at
one time the largest Bitcoin mining pool, allows merge mining Namecoin, IXCoin and DevCoin. So
those became the most popular merge-mined altcoins.

The second insight from the economic reasoning is perhaps even more worrying for security than the
concentration of mining power. When miners’ primary cost is proof of work, by design there is no way
for miners to “cheat”. There is no shortcut to mining given the security of hash functions, and
additionally, other miners easily can and will verify the proof of work. Both assumptions fail when the
cost is that of transaction validation. A miner could assume that transactions they heard about are
valid and hope to get away with it. Besides, for other miners to validate a block and its transactions is
just as much work as it was for the miner who found it. For these reasons, we should expect that at
least for small merge miners, there’s an incentive to skimp on validation. The existence of improperly
validating miners makes attacks easier because a malicious miner can create a block that will cause
the rest of the miners to disagree on what the longest valid branch is.

To summarize, merge mining solves one security problem but creates many others, in part because
the economics of merge mining differ in important ways from the economics of exclusive mining.
Overall, it’s far from clear that merge mining is a good idea for a new altcoin concerned about mining
attacks.
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10.5 Atomic Cross-chain Swaps

In Bitcoin it’s straightforward to create a single transaction that swaps currency or assets controlled
by different people or entities. This is the intuition behind Coinjoin, which we studied in Chapter 6. It
is also useful for trading smart property, which we looked at briefly in Chapter 9 and will return to in
Chapter 11. The same idea enables selling domain names in Namecoin, as mentioned earlier in this
chapter.

But in all these cases, the swap transactions are confined to a single block chain, even if they involve
different types of assets within that block chain. In general, a transaction on one altcoin is entirely
independent of and has no way of referring to a transaction that happens on some other altcoin’s
transaction history. But is this a fundamental limitation, or is there some way to swap one type of coin
for another? That is, if Alice wants to sell a quantity a of altcoin to Bob in exchange for a quantity b of
his bitcoin, can they do so in an atomic fashion, without having to trust each other or relying on an
intermediary, such as an exchange service? At first sight this seems impossible, because there is no
way to force transactions on two different block chains to happen simultaneously. If one of them, say
Alice, carries out her transfer before the other, what prevents him from reneging on his side of the
bargain?

The solution is clever, and involves cryptographic commitments and time-locked deposits, both of
which are techniques we’ve seen before. Figure 10.6 describes the protocol. For the moment, assume
that blocks in the two block chains are generated in lockstep: one block is generated every time unit.
Let T represent the time at the start of the protocol.

1. Alice generates a refundable deposit of a altcoins as follows:

1.1 Alice generates a random string x and computes the hash h=H(x)

1.2 Alice generates DepositA as shown below, but doesn’t publish it yet

1.3 Alice generates RefundA, and gets Bob’s signature on it

1.4 Once Bob signs RefundA, she publishes DepositA (but doesn’t publish RefundA)
2.  Bob generates a refundable deposit of b bitcoins as follows:

2.1 Bob generates DepositB as shown below, but doesn’t publish it yet

2.2 Bob generates RefundB, and gets Alice’s signature on it

2.2 Once Alice signs RefundB, he publishes DepositB (but doesn’t publish RefundB)
3.  Case 1: Alice goes through with the swap

3.1 Alice claims the bitcoins by time T, revealing x to Bob (and everyone) in the process

3.2 Bob claims the altcoins by time T,

Case 2: Alice changes her mind, does not claim the altcoins, does not reveal x to Bob

3.1 Bob claims his altcoin refund at time T,

3.2 Alice claims her Bitcoin refund at time T,
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DepositA [Altcoin block chain] RefundA [Altcoin block chain]
Input: Alice’s coins of value a Input: DepositA
ScriptPubkey: Redeemable by providing Output: AddrA

either (sigA and sigB) Timelock: T,

or sigB and x s.t. H(x) = <h> ScriptSig: SigA, sigB
DepositB [Bitcoin block chain] RefundB [Bitcoin block chain]
Input: Bob’s coins of value b Input: DepositB
ScriptPubkey: Redeemable by providing Output: AddrB

either (sigA and sigB) Timelock: T,

or sigA and x s.t. H(x) = <h> ScriptSig: SigA, sigB

Figure 10.6: Atomic cross-chain swap protocol

In step 1, Alice deposits altcoins of value a so that can be redeemed in one of two ways (a “deposit”
simply means sending those coins to a ScriptPubkey that specifies two possible conditions for
spending it). First, if Alice and Bob mutually agree, they can redeem it. Indeed, Alice publishes the
deposit only after making sure to get a refund transaction signed by Bob — this allows her to redeem
her deposit if 2 time units elapse and it hasn’t already been claimed.

The other way to claim Alice’s deposit, at any time, is by providing Bob’s signature as well as the value
x which opens the hash commitment h. Note that we write <h> in DepositA to indicate that Alice
literally writes the value of h into the ScriptPubkey. Since x is known only to Alice, at the end of stage
1 neither party is able to claim the deposit this way. The idea is that Bob will learn the value x,
enabling him to claim the altcoins, if and only if Alice claims his bitcoins, as we’ll see.

Step 2 is roughly the reverse of step 1: Bob deposits bitcoins of value b so that it can be redeemed in
one of two ways. The key difference is that he doesn’t pick a new secret; instead, he uses the same
hash value h (he would just copy the value from the DepositA transaction to the DepositB
transaction). This is the key to tying together transactions on the two block chains.

At this point the ball is in Alice’s court. She could change her mind about the swap — if at time T, Alice
hasn’t done anything to reveal x to Bob, he will simply claim his deposit and quit the protocol. Alice’s
other option is to claim Bob’s bitcoins before time T,. But she can only do this by creating and
broadcasting a ScriptSig which contains the value x; Bob can listen to this broadcast and use the value
same x to claim Alice’s altcoins, completing the swap.

Note that if Alice tries to claim Bob’s bitcoins a tad too late (after time T, but before time T,), Bob
might be able to claim both deposits. Similarly if Alice claims Bob’s bitcoins on time but Bob waits too
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long, Alice might be able to go home with both deposits. But this is not a problem: we are happy as
long as there is no way for a player deviating from the protocol to cheat the other player.

Finally, blocks in Bitcoin or any altcoin don’t arrive in fixed time steps, which introduces some
messiness, particularly as the two chains may not be synchronized. Let’s say both block chains have an
average time of 10 minutes between blocks. Then we’d want to pick a “time unit” of say 1 hour. In
other words, we’d want to have T, be at least current_altcoin_block + 12 and T, be at least
current_bitcoin_block + 6, possibly with a greater safety margin.

Unfortunately, there’s a small but nonzero chance that the next 12 altcoin block blocks will be found
before the next 6 Bitcoin blocks. In this case Alice might be able to claim both deposits. This
probability can be made arbitrarily small by increasing the time unit, but at the expense of speed.

This is a neat protocol, but as of 2015 no one uses it. Instead, cryptocurrencies are traded on
traditional, centralized exchanges. There are many reasons for this. The first is the complexity,
inconvenience, and slowness of the protocol. Second, while the protocol prevents theft, it cannot
prevent a denial of service. Someone might advertise offers at amazing exchange rates, only to quit
after step 1 or step 2, wasting everyone else’s time. To mitigate this and to aggregate and match
people’s offers, you probably need a centralized exchange anyway -- albeit one you don’t need to
trust not to steal your coins -- further diminishing the usefulness of the protocol.

10.6 Bitcoin-Backed Altcoins, “Side Chains”

Earlier in this chapter we talked about two ways in which we can allocate units of a new altcoin to
existing owners of bitcoins: either requiring provably burning bitcoins to acquire altcoins, or simply
allocating altcoins to existing holders of bitcoins based on bitcoin addresses that own unspent
transaction outputs. As we saw, neither of these allows bilaterally pegging the price of the altcoin to
that of Bitcoin. Without such pegging, the price of an altcoin is likely to be volatile during its
bootstrapping phase. The motivation for sidechains is the view that this price volatility is problematic:
it is a distraction and makes it difficult for altcoins to compete on their technical merits.

Here’'s what we need in terms of technical features to be able to actually peg the altcoin’s price to
Bitcoin’s at a fixed exchange rate. First, you should be able to put a bitcoin that you own into some
sort of escrow and mint one altcoin (or a fixed quantity of altcoins). You should be able to spend this
altcoin normally on the altcoin block chain. Finally, you should be able to burn an altcoin that you own
and redeem a previously escrowed bitcoin. This is similar to Zerocoin, where we escrow basecoins to
create zerocoins, but the difference is that here we need to do it across two different block chains.

The bad news is that as far as we know, there is no way to achieve this without modifying Bitcoin,
because Bitcoin transactions can’t be dependent on events happening in another block chain. Bitcoin
script simply isn’t powerful enough to verify an entire separate block chain. The good news is that it
can be enabled with a relatively practical soft-fork modification to Bitcoin, and that’s the idea behind
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Sidechains. The sidechains vision is that of numerous flourishing altcoins that rapidly innovate and
experiment, using Bitcoin as a sort of reserve currency. As of 2015 it is only a proposal, but one that is
being actively worked on and has serious traction in the Bitcoin community. The proposal is still in
flux, and we’ll take the liberty to simplify some details for pedagogical purposes.

The obvious but impractical way to extend Bitcoin to allow converting coins from a sidechain back to
bitcoins is this: encode all of the sidechain’s rules into Bitcoin, including validating all of the
sidechain’s transactions and checking the sidechain’s proof-of-work. The reason this is impractical is
that the resulting extensions to Bitcoin’s script would be too complex, and the verification effort
needed for Bitcoin nodes would be prohibitive. Besides, the complexity and effort would grow with
the number of pegged sidechains.

The SPV trick. The trick to avoiding this complexity is to use “SPV proofs.” Recall from Chapter 3 that
Simplified Payment Verification is used by lightweight clients such as mobile apps for Bitcoin. SPV
nodes don’t validate transactions they’re not interested in; they merely verify block headers. Instead
of worrying about the longest valid branch, SPV clients merely look for evidence that the transaction
they care about is in the longest branch, valid or not, and that it has received some number of
confirmations. They assume that the miners who created these blocks wouldn’t have put in the effort
to mine them without validating the transactions in those blocks.

Perhaps, then, we could extend Bitcoin’s script with an instruction to verify a proof that a particular
transaction (say, one that destroyed a coin) happened in the sidechain. The Bitcoin nodes doing this
verification would still be fully validating as far as Bitcoin’s block chain is concerned, but they would
do relatively lightweight SPV verification of events in the sidechain.

Contesting a transfer. This is better, but still not ideal. To do even simplified verification, Bitcoin
nodes would still have to connect to the sidechain’s peer-to-peer network (for each pegged
sidechain!) and track all of the sidechain block headers so that they can determine the longest
sidechain branch. What we want instead is this: when a transaction tries to convert a coin in a
sidechain back into a bitcoin, it contains all the information that Bitcoin nodes need in order to verify
its legitimacy, that is, to verify that a particular sidechain transaction happened. This is the notion of
an “SPV proof.”

Here we present one way in which it could work, with the caveat that this component of Sidechains is
still an area of research. To reference a sidechain transaction in Bitcoin, the user must provide proof
of (1) inclusion of the sidechain transaction in a sidechain block and (2) sidechain block headers
showing that this block has received a certain number of confirmations which cumulatively represent
a certain amount of proof of work. Bitcoin nodes will verify these claims, but will make no attempt to
verify that the chain of block headers presented is the longest. Instead, they will wait for a certain
defined period, say a day or two, to allow other users to present evidence that the block headers
presented in step 2 above are not on the longest branch. If such evidence is presented within the
defined period, the acceptance of the sidechain transaction in Bitcoin will be invalidated.
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The rationale is that if an SPV proof has been presented that shouldn’t be accepted because the
transaction is not on the longest branch, there must be some sidechain user who will be harmed by
the acceptance of this proof. This user will have the incentive to present evidence to invalidate the
proof. If there is no user who will be harmed (perhaps there was a fork or reorganization of the side
chain, but the transaction in question was also present in the other branch) then there is no harm in
accepting the proof.

More generally, the system doesn’t try to be bulletproof against problems in sidechains, and it won’t
prevent you from shooting yourself in the foot. If you transfer your bitcoin into a sidechain that has
broken crypto, for example, someone else might be able to steal your coin on the sidechain and
convert it back into a bitcoin. Or all mining on the sidechain might collapse due to bugs, with the
locked bitcoins lost forever. But what the proposal does make sure of is that problems on sidechains
can’t damage Bitcoin. In particular, there is no way to redeem the same coin twice from a sidechain
regardless of how buggy it may be — that is, sidechains won’t allow you to mint bitcoins.

Compact SPV proofs via proof-of-work samples. There is one final difficulty. Some of the sidechains
might have a high block rate, perhaps one block every few seconds. In this case, even verifying SPV
proofs might be too onerous for Bitcoin nodes. It turns out that we can use a clever statistical
technique to decrease the amount of computation needed to verify N block confirmations from O(N)
to a number that grows much slower than linear.

The intuition is this: when we’re verifying that a block is buried deep in the block chain, we're

verifying that each block that builds on it meets the target difficulty, i.e., it satisfies hash < target. Now

the hash values of these blocks will uniformly distributed in the interval (0, target), which means that

statistically, about 25% of those blocks will in fact satisfy hash < target / 4. In fact, the amount of work

needed to find N/4 blocks that each satisfy hash < target / 4 is the same as the amount of work
needed to compute N blocks each satisfying hash < target. There is of course nothing special about
the number 4; we could replace it by any factor.

TN

Figure 10.7: a proof-of-work skiplist. Blocks contain pointers both to the previous block and to the
nearest block that satisfies hash < target / 4. The concept could be applied recursively, with a third
level of pointers to blocks satisfying hash < target / 16, and so on.

What this means is that if we had some way of knowing which blocks in the chain satisfied hash <
target / 4, and verified only those blocks (or block headers), we’d be done, having put in only
one-fourth of the verification work! How would we know which blocks satisfy hash < target / 4? The
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block themselves could tell us. This is shown in Figure 10.7, each block would contain a pointer both
to its predecessor as well as to the most recent block that satisfied hash < target / 4.

How far can we push this? Can we pick arbitrarily large multiples? Not really. The logic here is similar
to pooled mining, but in reverse. In pooled mining, the pool operator verifies shares, which are blocks
with a lowered difficulty (that is, a higher target value). Miners find many more shares than blocks, so
the operator must do extra work to verify them. The benefit of doing so is the ability to estimate the
miner’s hash power much more accurately — the variance of the estimate is lower.

Here we see the opposite tradeoff. As we do less and less work to estimate the total amount of work
that has gone into building the chain, our estimate will have a greater and greater variance. Here’s an
example. Suppose N=4, so that without the skiplist solution, we’d check that there are 4 blocks that
satisfy hash < target. The expected amount of work that an adversary must do to fool us is 4 times the
average amount of work needed to find a block.

Suppose the adversary only does half this amount of work. If we do the math, it turns out that this
adversary has a 14% chance of finding 4 blocks that satisfy hash < target. On the other hand, with a
skiplist solution with a factor of 4, the adversary’s task would be to find a single block that satisfies
hash < target/4. In this scenario, the lazy adversary who only does half the expected amount of work
will be able to fool us with a probability of 40% instead of 14%.

10.7 Ethereum and Smart Contracts

We have seen several ways to use Bitcoin’s scripting language to support interesting applications,
such as an escrowed payment transaction. We've also seen how Bitcoin script is somewhat limited,
with a small instruction set that isn’t Turing-complete. As a result, some new altcoins propose adding
application-specific functionality. Namecoin was the first example but many others have proposed
cryptocurrencies much like Bitcoin but supporting gambling, stock issuance, prediction markets, and
so on.

What if, instead of needing to launch a new system to support every application, we built a
cryptocurrency that could support any application we might dream up in the future? This what
Turing-completeness is all about: to the best of our knowledge, a Turing-complete programming
language lets you specify any functionality that is possible to be specified by any other computer. To
some extent, the situation today harkens back to the early days of computers themselves in the
1940s: increasingly complicated machines were being built for various specific applications during
World War Il (such as brute-forcing keys used by mechanical cipher machines or determining firing
trajectories for naval artillery), motivating researchers to build the first reprogrammable
general-purpose computers that could be used for any conceivable applications.
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Figure 10.8: A rebuilt Bombe machine located at the Bletchley Park museum. The Bombe was a
special-purpose computer designed by Alan Turing to crack German Enigma ciphers. Will Ethereum do
to application-specific altcoins what the general-purpose computer did to Bombe-like contraptions?

Ethereum is an ambitious altcoin that aims to provide a Turing-complete programming language for
writing scripts or “contracts”. While there are other proposals to do this, Ethereum is the most
notable: it introduced several novel technical ideas, held a successful crowd-funding campaign, raising
$20 million over several months, and adopted aggressive choices for parameters such as block time.
In this section we’ll provide a brief overview of Ethereum — though the system is complex enough
that we could easily devote an entire second textbook to it!

Smart Contract Programming Model. The term smart contract was first used to describe the use of
computer systems (or other automated means) to enforce contracts. As an example, you could think
of a vending machine as a mechanical smart contract that enforces an agreement between you and
the machine’s owner involving the purchase of a candy bar.

In Ethereum, a contract is a program that lives on the blockchain. Anybody can create an Ethereum
contract, for a small fee, by uploading its program code in a special transaction. This contract is
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written in bytecode and executed by a special Ethereum-specific virtual machine, usually just called
EVM. Once uploaded, the contract will live on the blockchain. It has its own balance of funds, other
users can make procedure calls through whatever API the program exposes, and the contract can
send and receive money.

A simple example: Namecoin in Ethereum. We claimed that Ethereum can be used to implement any
application-specific altcoin’s functionality. As a simple example, we can show how to implement
Namecoin-style functionality in a very simple Ethereum contract.

One example implementation is shown in Figure 10.8. It is coded in Solidity, Ethereum’s high-level
programming language for defining contracts. This contract implements a crude name/value store or
name registry, in which names are assigned values once and for all. The contract defines a data
variable, registryTable, which is a mapping from 32-byte strings to public keys. initially, it maps every
string to the null address 0x0000000000...000. This contract also defines a single entry point, called
“claimName”. This entry point accepts a single argument, name. First, the contract makes sure that
the caller has sent a value of at least 10 wei, wei being the smallest currency unit in Ethereum. If
insufficient funds have been sent, the contract terminates with an error (the “throw” statement does
this) and no action is taken. If sufficient funds are sent and the name is not yet taken, then it is
permanently assigned the value of whichever address invoked this function.

contract NameRegistry {
mapping(bytes32 => address) public registryTable;
function claimName(bytes32 name) {
if (msg.value < 10) {
throw;
}
if (registryTable[name] == 0) {
registryTable[name] = msg.sender;

}

Figure 10.8: A simple Ethereum smart contract implementing a name registry.

That’s all this contract can do in 8 lines of code. But we could add all of the other features of
Namecoin with a little more work. For example, we could store more data with each mapping than
just the address of the entity that claimed it. We could require name owners to re-register periodically
by storing a “last updated” time and allowing other users to claim names that haven’t been updated

in a long time.

We might also want to add a second function to allow the money be withdrawn. As currently

programmed, the money will just accumulate at the contract forever, essentially being removed from
circulation. Of course, in the function allowing money to be withdrawn, we’d better make sure to
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check that the caller is the owner of the contract. Anybody can call any function on an Ethereum
contract, but the calls are signed so we can securely identify who the caller is.

Gas, incentives, and security. Unlike Bitcoin, Ethereum supports loops, although we didn’t need them
in our first example. That should immediately raise alarm bells. If there are loops, there can be infinite
loops. In general, Ethereum contracts might run forever for a variety of reasons. A famous result in
computer science (the undecidability of the Halting Problem) states that there’s no algorithm that can
look at a program’s source code and always correctly determine if it will run forever or not. So how
can we prevent contracts from running forever?

More generally, we need some way to limit contracts that take a long time to run, even if it’s finite.
Ethereum uses a mechanism called gas to achieve this. Essentially, executing each virtual-machine
instruction costs a small amount of money, called gas. Different operations cost different amounts.
Basic operations like addition or comparison cost 1 gas, whereas computing a SHA-3 hash (available as
a built-in instruction) costs 20 gas and writing a 256-bit word to persistent storage costs 100 gas.
Every transaction also costs 21,000 gas right off the bat. You can think of Ethereum like flying on an
ultra-discount airline: you pay to get on board and you pay extra for everything you do from there.
The complete list of instructions available in Ethereum and the gas cost of each is fixed; changing
these would require a hard fork just like changing the semantics of Bitcoin’s scripting language.

Gas is paid for using Ethereum’s built-in currency, called ether. It’s just called gas when being used to
pay for contract execution. Every transaction can specify the “gas price”, that is, how much ether it
will pay per unit of gas consumed. The gas price offered is like the transaction fee in Bitcoin: miners
are free to publish transactions with any gas price, and each miner can independently decide their fee
structure. This should result in a market price for gas reflecting supply and demand. As of early 2016,
however, the network remains experimental, and has coalesced around a default of 50 gigawei per
unit of gas. 50 gigawei is 5X10°® ether, or about 3)X10° BTC given the ether-BTC exchange rate in
January 2016.

Every call must specify up front how much gas it is willing to spend (the “gas limit”). If this value is hit
(running out of gas), execution halts, all changes to the program’s state are undone, and the miner
pockets the gas anyway. So it’s very important not to run out of gas.

The gas requirement means that very expensive computations are not suitable for Ethereum. The
system is not designed to be a cloud-computing service where you to pay others to do a difficult
computation that you’re unable to do yourself. Services like Amazon’s Elastic Compute Cloud or
Microsoft’s Azure provide millions of times more bang for your buck. On the other hand, Ethereum is
suitable for implementing security protocol logic. Essentially, it provides a service that two (or more)
anonymous parties can count on to behave as specified.

The security of Ethereum’s block chain is not nearly as well-established as Bitcoin’s. Theoretically, the
system is much more complex and therefore harder to reason about mathematically. Practically,
Ethereum hasn’t been around for very long and hasn’t been subject to the same kind of scrutiny as
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Bitcoin. In particular, there are concerns that the cost of transaction processing throws Bitcoin-style
incentive arguments out of whack, similar to our discussion about merge mining. When transaction
processing is a nontrivial fraction of a miner’s total cost, the system favors larger miners since this
cost is independent of hash power. More importantly, the gas payment goes only to the miner who
initially includes the transaction in a block. But all miners building on that block must also validate the
transaction, and they don’t get paid for doing so. This means they have an incentive to skip validation.
As we saw earlier, this can be dangerous for the health of the block chain.

A second example: chess in Ethereum. We still haven’t said much about what you can do with
Ethereum that’s new, so let’s look at a second example. Suppose Alice wants to challenge Bob to a
game of chess with money on the line. The only problem is that Alice and Bob live in different
countries and neither trusts each other to pay if they lose. This is a problem Ethereum can solve!

Alice will write an Ethereum program that implements the rules of chess and upload it to Ethereum.
She’ll send the contract a quantity of ether equal to the amount she wants to bet. Bob can see this
contract, and if he decides to accept the challenge, he can start the game by sending his own betting
stake to the contract. Before doing this, Bob should make sure the contract is correctly written in that
it implements chess and will ultimately send all of its value to the winning player.

Once both players have sent their stake in, the contract should check that the stakes are equal,
assuming they’re making an even wager. At this point the game is afoot, and there should be no way
for either player to extract the money from the contract without actually winning the game, or for
anyone else to extract the money under any circumstance.

Alice and Bob will take turns sending transactions to the contract which indicate the next move they’d
like to play. The contract, of course, must ensure that each move is sent in only by the player whose
turn it is to move, and not by the other player or by someone else entirely. Remember that every
transaction (which causes the contract to execute a function) is signed by the caller, so the contract
can ensure this. The contract will also have to check all of the rules of chess. If a player tries to move a
pawn three spaces, that will have to be rejected.

Eventually, the game will end. After each move, the contract must check if either player is mated, or if
the game is a draw by stalemate or one of the other drawing conditions in chess. Players should also
be able to send in a move indicating their resignation. When the game ends, the contract can
terminate itself and send all of the money to the winning player. or split the money in case of a draw.

Conceptually, this is a simple application of Ethereum, but there are subtleties. What if a player in a
losing position simply walks away? The contract will need a mechanism that awards the money to the
opponent if a player hasn’t submitted a valid move in a specified period of time.

Which player gets to move first? “Playing white” confers a slight advantage in chess, so both players
want this advantage. This points to a difficulty faced by many Ethereum contracts: there is no built-in
source of randomness. This is a hard problem, as the random number generator needs to be verifiable
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by all miners (so they can check that the contract was executed correctly) but shouldn’t be
predictable to either player (or else they might refuse to join if they know they will have to play
second).

This is the problem of randomness beacons. As we discussed in Section 9.4, the contract might hash
the value of the next block in the blockchain after both players have joined. For our specific
application, the problem is a bit easier, since only Alice and Bob need to be convinced that the coin
flip is random, not the whole world. So they might use the approach from Section 9.3: they both
submit the hash of a random value, then both reveal the inputs, and derive the random bit from the
inputs. Both approaches have been seen in practice.

Other applications. Playing chess might be fun, but the real excitement for Ethereum is about
financial applications. Many of the applications we’ve discussed in the text so far, including prediction
markets, smart property, escrowed payments, micropayment channels, and mixing services, can all be
implemented in Ethereum. There are subtleties to all of these applications, but they are all possible
and in most cases are much simpler to implement than the types of bolt-on protocols we’ve seen with
Bitcoin. There are also a host of other applications, like auctions and order books, that we haven’t
talked about but which people are enthusiastic about using Ethereum to implement.

State and account balances in Ethereum. In Chapter 3, we discussed two ways to design a ledger:
account-based and transaction-based. In a transaction-based ledger like Bitcoin, the blockchain stores
only transactions (plus a small amount of metadata in the block headers). To make it easier to validate
transactions, Bitcoin treats coins as immutable, and transaction outputs must be spent in their
entirety, with change addresses used if necessary. Effectively, transactions operate on a global state
which is a list of UTXOs, but this state is never made explicit in the Bitcoin protocol and is simply
something miners create on their own to speed up verification.

Ethereum, on the other hand, uses an account-based model. Since Ethereum already stores a data
structure mapping contract addresses to state, it is natural to also store the account balance of every
regular address (also called an owned address) in the system. This means that instead of representing
payments using an acyclic transaction graph where each transaction spends some inputs and creates
some outputs, Ethereum just stores a balance for each address like a traditional bank might store the
balance of each account number.

Data structures in Ethereum. In Chapter 3, we said that an account-based ledger would necessitate
fancy data structures for record-keeping. Ethereum has just such data structures. Specifically, every
block contains a digest of the current state (balance and transaction count) of every address as well as
the state (balance and storage) of every contract. Each contract’s storage tree maps arbitrary 256-bit
addresses to 256-bit words, making for a whopping 2%°° X 256 = 2% bytes of storage! Of course, you
could never fill up all of this storage, but that’s the theoretical space. The digest makes it easy to
prove that a given address has a given balance or storage state. For example, Alice can prove to Bob
what her balance is without Bob having to scan the entire block chain to verify the proof.
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The simple binary Merkle tree used in Bitcoin would work for this purpose as it allows efficient proofs
of inclusion (provided miners ensure that no tree will include two different states for the same
address). But we also want fast lookups and the ability to efficiently update an address’s value. To do
this Ethereum uses a slightly more complicated tree structure called a Patricia tree, also known as a
prefix tree, trie, or radix tree. Each Ethereum block includes the root of a Merkle Patricia tree
committing to the state of every address, including contract addresses. Each contract’s state, in turn,
includes a tree committing to the entire state of its storage.

Another tricky issue with an account-based ledger is preventing replay attacks. In Bitcoin, since every
transaction consumes its input UTXOs, the same signed transaction can never be valid twice. With
Ethereum’s design, we need to make sure that if Alice signs a transaction saying “pay 1 ether to Bob”,
Bob can’t broadcast the transaction over and over again until Alice’s account is drained. To avoid this,
every account in Ethereum has a transaction counter tracking how many transactions it has sent. The
statement Alice really signs is “I authorize my nth transaction to be a payment of 1 ether to Bob.” This
transaction can’t be replayed because after it is processed, Alice’s transaction counter will increment
and is part of the global state.

To summarize, Ethereum uses more powerful data structures than Bitcoin as part of its ledger.
Although we haven’t looked at the details, it allows efficient proofs of a variety of types of statements
about accounts, contracts, and transactions.

Ethereum project. Ethereum was initially described in late 2013 and launched its first release, dubbed
Frontier, in 2015. Ethereum utilized a pre-sale, making units of the ether currency publicly available
for a fixed price in Bitcoin, with all of the proceeds going to the Ethereum Foundation.

This is a slower pace of development compared to many altcoins, but it reflects that fact that
Ethereum is much more complex. In addition to EVM, a new programming model, and new data
structures, Ethereum made significant changes to Bitcoin’s consensus protocol as well. The block time
is targeted at 12 seconds instead of 10 minutes. To lessen the impact of stale blocks, which comprise a
larger fraction of blocks in Ethereum than in Bitcoin, Ethereum uses an alternative protocol called
GHOST to compute the consensus branch. It also uses a different proof-of-work. Currently, it’s a mix
of hash functions designed to be memory hard, though in the future Ethereum plans to switch to a
proof-of-stake system.

This represents another major departure in philosophy from Bitcoin. The Ethereum project is
stewarded by a non-profit foundation and is relatively centralized in planning and decision making.
There is an announced schedule of future versions of the protocol that will introduce changes based
on early Ethereum experience. These will be hard forks by design, and furthermore, every Ethereum
contract will be destroyed in between versions. So Ethereum is still very much an experimental
system with major changes planned. As of 2015, it’s premature to invest too much in building real
applications on top of Ethereum. But it’s a very promising system. Perhaps future versions of this
textbook might even be called “Ethereum and Cryptocurrency Technologies.”
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To wrap up this chapter, we’ve talked about how a Bitcoin is an important part of a much larger
ecosystem of cryptocurrencies and altcoins. They compete, cooperate, and interact in various ways,
some cooperative, some harmful. It's also possible that in the future, there will be technical ways for
transactions in one block chain to explicitly refer to transactions in another block chain.

There remain several open questions. Will the altcoin ecosystem consolidate so that a small number
dominate, or will it stay diversified? Will application-specific altcoins proliferate or will the Ethereum
model of a general-purpose platform come to dominate? Is Bitcoin itself eventually going to be
overtaken by some other altcoin? Is it a good idea to encourage interaction between Bitcoin and
altcoins? Or should each cryptocurrency be a separate system, for example by using incompatible
mining puzzles rather than merge mining? We can’t answer these questions right now, but we’ve
talked about all of the concepts you need to understand and appreciate their importance.

Further Reading

The sidechains white paper:

Back, Adam, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timén, and Pieter Wuille. Enabling blockchain innovations with pegged
sidechains. 2014.

A paper about Namecoin and alternate ways to design name/value stores using cryptocurrencies:

Kalodner, Harry, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan. An
empirical study of Namecoin and lessons for decentralized namespace design. In Workshop on the
Economics of Information Security, 2015.

The Ethereum white paper:

Various authors. A Next-Generation Smart Contract and Decentralized Application Platform.

A paper that analyzes the incentive misalignment in Ethereum:

Luu, Loi, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in the
consensus computer. ACM SIGSAC Conference on Computer and Communications Security, 2015.
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Chapter 11: Decentralized Institutions: The Future of Bitcoin?

So far in this book we’ve explored the state of Bitcoin and block chain technologies as of 2015. In this
chapter, we’ll consider what future possibilities may be realized by Bitcoin. We won’t claim to know
what might unfold, following the adage “never make predictions, especially about the future.” Hence
the question mark in the title.

Instead, we’ll stick to the academic approach we’ve taken so far in this book, even when studying
potential future technologies. Bitcoin’s future is a subject that seems to muster enthusiastic and
breathless visions of a true technological revolution. This chapter could be a manifesto. It is not. We
identify notable proposals and take a clinical approach to categorizing them and critically evaluating
their relative pros and cons.

Bitcoin is a broad subject that encompasses the protocol itself as well as its potential as a platform for
new applications. The focus of this chapter is not the future of the Bitcoin protocol, although we
recognize that there are many issues that will shape the future of the protocol that are important to
study, including Bitcoin’s governance, efficiency, scalability, and feature set.

Instead we will focus on how Bitcoin’s apparent success at decentralizing currency may cause us to
rethink other centralized institutions — ones dealing with stocks, bonds, property titles, and more.
We’'ll ask if block chain technology could be applied to decentralizing them as well. Not only should
we ask if decentralization is technically possible, but also if it is financially sensible and beneficial to
society.

11.1 The Block Chain as a Vehicle for Decentralization

There were numerous failed attempts at digital or electronic cash before Bitcoin (the preface to this
book touched upon many of them). Bitcoin’s key difference compared to most of these attempts is
decentralization. The core innovation of Bitcoin that enables decentralization is the block chain.

In this section, we will consider how block chain technology may enable decentralization in areas
other than currency. Throughout this chapter, we’ll use a running example of a car whose ownership
is controlled through a block chain. This is a specific example of a more general idea of smart property
which we introduced in Chapter 9. Smart property, and digital contracts that govern them, were
pioneered by Nick Szabo and others in the early 1990s, well before Bitcoin was proposed. However
with a block chain, the idea can be made concrete.

Motivating Example. Modern automobiles use two primary locking mechanisms: physical locks on the
doors and a vehicle immobilizer which electronically prevents the engine from starting. The owner is
provided with a key fob that communicates wirelessly with the car to authorize the doors to unlock
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and the engine to start based on the proximity of the fob to the car and potentially a user action such
as pushing a button.

To prevent an adversary from spoofing the car key, such unlocking mechanisms should use
cryptography. While security researchers have found problems with many recently deployed locking
protocols, it’s possible to get it right. Typically these algorithms employ symmetric key cryptography,
but for the purposes of our example, consider one that uses a digital signature scheme, such as
ECDSA, based on asymmetric cryptography.

In this example, the car might store a copy of the public key(s) of the fob(s) authorized to open the
doors and start the engine. When a fob requests access, the car sends a random challenge and asks
the fob to sign it with the private key that it stores. If and only if the fob can respond with a proper
signature on this challenge, the car authorizes access. So far this is not much of a departure from how
locking mechanisms actually work, except that it uses heavier-weight crypto that would be slightly
more costly to deploy.

Get Smart. The next iteration of designing a smart car is to assume that the public key that verifies the
key fob is not hardcoded by the manufacturer directly. Instead, the car has the technical capability to
constantly, wirelessly receive new blocks from a block chain such as Bitcoin’s. When the car is
manufactured, the public key in the key fob of its first user (say a manager on the assembly plant) is
added to the block chain in a special transaction, and the car is programmed with its transaction ID.

The core idea is that as the car changes possession — it might go from an assembly line to quality
control to a delivery person to a car dealership to its first owner — updates to the block chain will
authorize each transfer. It is important to note that in this model, the authorized key fob does not
travel with the car. Each person or entity has a pre-existing key fob (or carries/wears technology
suitable for implementing the functions of a key fob) with a unique signing key which is activated or
deactivated based on transactions that occur on the block chain. Such a transaction would take the
car’s most recent transaction ID as an input and designate a new public key as the output. It would be
signed with the private key corresponding to the current owner.

This is similar to the idea of smart property that we discussed in Chapter 9, but with a key difference.
The block chain transaction doesn’t merely represent a change in ownership of the car: it additionally
transfers actual physical control or possession of the car. When a car is transferred this way the earlier
owner’s key fob stops working and the new owner’s key fob gains the ability to open the locks and
start the engine. Equating ownership with possession in this way has profound implications. It enables
a powerful kind of decentralization, but it is not obvious if this is a good idea. We'll return to this
guestion in the final section of this chapter.

Secure exchange. Let’s consider the situation where Alice owns a smart car and wants to sell it to Bob.
The ability to transfer control digitally opens up interesting possibilities. For example, Alice might be
traveling overseas and to fund further travel expenses might want to sell her car, which is physically
parked in her driveway back home. With an internet connection, Bob could pay Alice for the car with
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Bitcoin, Alice can remotely transfer ownership to Bob with the block chain used by the car, and Bob
can drive away with his new car.

However, such transactions carry a certain risk. If Bob sends payment first, Alice might keep the
money and not transfer ownership. If Alice transfers ownership first, Bob might drive away without
paying for the car. Even if Alice is physically present, one party might abort and it could be difficult for
a third party who was not present to mediate the dispute.

We've encountered this problem several times before, including in Coinjoin (Chapter 6), and in
Namecoin (Chapter 10). The solution in all these cases uses the same principle. As long as the
currency used for payment and the car ownership co-exist on the same block chain, Alice and Bob can
form a single atomic transaction that simultaneously transfers ownership of the car and the payment
for the car. Specifically, the transaction would specify two inputs: Alice’s ownership and Bob’s
payment; and specify two outputs: the ownership to Bob and the payment to Alice. The transaction
requires both parties to sign because both are providing inputs. If one signs and the other does not,
the transaction is not valid. Once one party signs, the transaction details cannot be changed without
invalidating the signature. Once the signed transaction is broadcast to the block chain, the car will
wait for a preset number of confirmations (say, 6) and then allow Bob access. Simultaneously, Bob’s
payment to Alice will be confirmed. One cannot happen without the other.

The diligent reader might notice a subtle problem. Bob could accept a transaction signed by Alice, sign
it, but not actually broadcast it (yet). If the price of what Alice is selling changes, Bob can then
broadcast the old transaction at the original price. More complicated atomic transactions have been
proposed that include a time-out. Alice can also simply spend the input to a new address she controls
to invalidate the signed transaction she gave to Bob as a means of revoking it.

This is the first of many examples that we’ll see in this lecture that allows us to use block chain
technologies to decentralize a variety of different types of real-world protocols, and we’ll achieve
different types of decentralization. But this idea of atomicity is common to most of them, that is,
coupling together the deliverables of each side of a transaction so they all happen simultaneously (or
not at all). Atomicity is an important security concept with applications outside of block chain
technology.

11.2 Routes to Block Chain Integration

Because Bitcoin’s block chain has been tailored for currency, it can be challenging to repurpose it to
represent the semantics of other applications. In the Bitcoin community, you will find many people
who are quite partial to either Bitcoin or alternative block chains as a platform for decentralization.
We will try to neutrally examine the two alternatives in this section.
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Route 1: Directly on Bitcoin

The natural starting point for block chain integration is Bitcoin’s block chain. This is the approach we
used in the previous example of a smart car. The main advantage to using Bitcoin directly is
deployability: the code runs, the network has acquired significant mining power, and the consensus
process appears sound. However we were only able to use Bitcoin in the example application with
some hacks, such as an equivalence between the crypto that’s used to authorize Bitcoin transactions
and the crypto that’s used to open car doors. It will not always be the case that such hacks are
possible. More fundamentally, if you have some arbitrarily complex contract between different
parties, it is not necessarily the case that it can be represented adequately on Bitcoin’s block chain
and executed atomically. To illustrate the perils of using Bitcoin’s block chain, let us consider how we
might implement a few natural applications of disintermediation.

First consider crowd funding services. As of 2015, the largest example is Kickstarter which matches
entrepreneurs with funders through a central website. If we liked the idea of Kickstarter but wanted
to build a completely decentralized alternative, we would need to realize a system where
entrepreneurs can request contributions, but cannot spend the money until they collect a
pre-specified amount, all without the existence of an intermediary.

Y 1K 1000

Figure 11.1: crowd-funding via Bitcoin. Each contributor signs their own input and the output.
The transaction will be invalid until the cumulative sum of inputs matches or exceeds the output.

An approach to technically achieving this, with Bitcoin, is to instruct entrepreneurs to create a single
transaction with an arbitrary number of inputs (that can vary as the process in underway) and a single
output to themselves for a specified amount, say 1000. Such transactions will circulate amongst
potential sponsors, where anyone can contribute by adding an input to the transaction for the
amount of their contribution and digitally signing their own input, as well as the overall output. Such a
transaction cannot be spent by the entrepreneur until the inputs are greater than or equal to the
output. This uses some little-known features of Bitcoin in order to spend the final transaction given
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only these signatures of limited form. While this is achievable on Bitcoin today, we already have to
delve into some little known-corners of Bitcoin. It is not an everyday standard Bitcoin transaction.

Now consider a second example: paying for a proof. This example may initially seem strange but has
some important applications. To illustrate it, say there is a hash function H and a publicly known value
y that is ostensibly an output value of H on some input value, or pre-image, x. Alice claims she knows
this value x and Bob would like to pay Alice to learn it as well. In general, H could instead be any
computable program, and Bob would like to learn input values that produce certain outputs he is
interested in. In a variant of this problem, Bob might pay for the input values to be published publicly
on the block chain.

To securely realize this transaction, we must ensure atomicity: Alice should only get paid if she
produces a correct input and Bob must be committed to paying upon production of such an input.
Recall that in the protocol for atomic cross-chain swaps in Chapter 10, we showed how to tie a
payment with the revelation of the input value to a given hash output. A similar approach can be used
here.

These examples illustrate an important limitation of the direct approach of using Bitcoin’s block chain.
In each case, we had to encode a complex transaction from the real world into Bitcoin’s abstractions.
This may not always be possible. In the example of the smart car, we conveniently assumed that the
car uses ECDSA signatures for authenticating the car owner. That allowed us to use the same
public/private key pair on the block chain and in a key fob to unlock and start the car. In the
crowd-funding example, the way we have described it, the entrepreneur is able to collect only the
exact amount they requested, no more. If the contributions exceed that amount, that excess becomes
a transaction fee. Finally, in the paying for proof example, linking the payment to the revelation of a
value becomes tricky if the function H isn’t one of the hash functions that Bitcoin’s script supports.

If you can’t — or don’t want to — shoehorn your application into Bitcoin’s transaction semantics,
there is always the option of using an overlay currency, which we saw in Chapter 9. This treats Bitcoin
as a mere data store, so the expressiveness of Bitcoin’s script becomes irrelevant. In addition to the
ability to implement many more types of applications, this approach can also enable transparency.
Consider the car sale example again. If the color of real world objects (in the sense of colored coins) is
known, anyone can examine the block chain to see when a car sale has happened and how much was
paid for it without necessarily knowing the identities of the buyer and seller. This may be useful in
some circumstances, and the color can be kept private in situations where it is detrimental.

On the other hand, there are important drawbacks. Users of an overlay currency can’t rely on Bitcoin
miners to validate their transactions (since miners don’t understand the transaction semantics of the
overlay). This means all users of the overlay must run their own full nodes, and SPV is not possible.
Overlay currencies are also brittle if there are bugs in implementations that cause consensus protocol
to fail. If two implementations of an overlay currency mutually disagree on whether a particular
transaction is valid, it may fork the currency into two, with potentially disastrous consequences. By
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contrast, when miners are validating transactions, this is much less likely to happen, and if it does, it
will be noticed quickly and is likely to get resolved without resulting in a fork.

An additional consideration, whether or not we’re using an overlay, is the issue of burdening or
“polluting” the Bitcoin block chain with transactions that are outside its original scope. This is a
divisive issue in the Bitcoin community. We won’t pick a side, but we’ll point out that there is a way to
mitigate this problem: using Bitcoin as a mere timestamping service, as we saw in Chapter 9.1, and
not even as a data store. As of 2015 there are nascent services that offer a separate block chain or
data store, but one that is timestamped via the Bitcoin block chain. This is just like the GuardTime
service from Chapter 9, but with hashes committed every 10 minutes to the Bitcoin block chain
instead of every week in the newspaper. Using Bitcoin for timestamping requires only one transaction
per block (for each such service or protocol). One drawback is that such external data stores are
unlikely to be as widely replicated and available as Bitcoin’s block chain. Additionally, it introduces a
degree of centralization.

To summarize, whether using an embedding technique or not, Bitcoin’s block chain does enable many
novel applications. It comes with the benefit of wide-scale adoption, from both users and miners,
which makes it a secure and readily deployable option.

Route 2: Alternative block chains

The other route to decentralization is to utilize an alternative block chain. Here again there are a few
options. The most obvious one is to have a separate block chain with its own rules, functionality, and
currency, i.e., an altcoin. Another option is sidechains, which we looked at in Chapter 10. The main
difference is that the currency represented by the sidechain would be pegged in a 1:1 fashion to
Bitcoin. Sidechains with enhanced scripting capabilities could allow us to achieve complex contracts
and enable disintermediation. However, supporting sidechains requires modifications to Bitcoin, and
as of 2015 it hasn’t yet happened.

The third option is to utilize an already-existing alternative block chain that supports the ability to
create new applications on top of it. As of 2015, the most prominent project that seeks to be a
platform for decentralized cryptocurrency-based applications is Ethereum, which we discussed in
Chapter 10. Conceptually, it is a dream platform for decentralizing arbitrary complex contracts.
However it also has some practical challenges: at least as of 2015, it does not have the maturity,
adoption, or mining power of Bitcoin, nor has it received a comparable level of scrutiny. Nevertheless,
it is a fascinating thought experiment for decentralizing powerful contracts, and either Ethereum or a
similar system might become practically viable in the future.
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11.3 Template for Decentralization

We have reviewed a number of avenues for achieving decentralization on a block chain. Next, it would
be useful to establish a template for what decentralization looks like in terms of what is being
decentralized, which type of block chain is appropriate, and what exactly decentralization means in
terms of entities and security.

Levels of Decentralization

Decentralization through disintermediation. Let’s return to the example of the smart car. To
understand it better, let us ask, what is the real-world process that this digital type of ownership
transfer seeks to replace?

Sticking with cars as the example of property, in the United States, ownership is determined by the
title document. This is a centralized form of ownership. The title document only has meaning to the
extent that the Department of Motor Vehicles (DMV) recognizes it. When a car is sold, it is not enough
to physically transfer this document from the seller to the buyer. The transfer has to be registered in
person with the DMV, who will update their central database. With block chain transfers, we move
from a state-controlled centralized process to one without any intermediaries. It achieves
decentralization through disintermediation.

Dispute mediation: decentralization through competition. Now assume that there is a dispute about
the sale of a car. Perhaps the seller sold a lemon car to the buyer, and the buyer is unhappy and wants
to reverse the transaction. In Chapter 3, we discussed 2-out-of-3 multisignature transactions which
can allow escrow if, in addition to the buyer and the seller, there is a judge or a mediator. In this
scenario, the buyer can transfer bitcoins in a separate transaction from the car, not directly to the
seller, but instead to a two-out-of-three address which is controlled jointly by the buyer, the seller
and the mediator. The mediator can either approve the transfer or revert it with the help of one or
the other party, but cannot steal the money.

This is a good start to building a dispute-resolution mechanism, but there are still many details to sort
out. First, we lose the atomicity of the car sale that we relied on earlier. Second, it is not clear if the
car’s ownership can be reverted with the money. Third, if the car is transacted to a 2-out-of-3 address
as well, whose key fob should be authorized to unlock it while in this state? Our purpose here is not to
iron out these issues but to use the example to carefully consider the role of the mediator.
Specifically, let us compare this model of mediation to a more traditional model.

How would dispute mediation happen in the physical world? It would likely go through the court
system, a centralized, state-controlled mediation process that is best navigated with the help of hired
lawyers. On the other hand, with a digital contract, the parties are free to choose any mediator they
want. No longer mandated to work with the legal system, a private market for mediation could
emerge where potential intermediaries can compete on perceived fairness, efficiency, and cost. There
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are also a number of challenges. The first is incentives: mediators might be bribed by either of the
parties to a transaction. The second is that funds are locked up during the dispute-filing period.
Finally, participants may be anonymous, which makes it difficult to ultimately involve the courts if
internal dispute resolution fails. Even if the parties are identified, digital contracts are currently not
recognized by courts.

Our point here, however, is that this is not decentralization through disintermediation — we are not
completely removing the intermediary. Rather, it enables entities to choose who they trust. In other
words, it is decentralization through competition. Thus there is a spectrum where on one side you
have a single mandatory intermediary and on the other side, you remove the need for any
intermediary at all — complete disintermediation. In the middle, you could have multiple competing
intermediaries as we just saw. In fact, we saw this earlier in Chapter 9 when we discussed
decentralized prediction markets. Instead of a single entity, like InTrade, running the market,
participants are free to choose who they trust from multiple competing arbitrators that perform the
sensitive operations within the market.

How Security is Achieved

There is another observation we can make about this example. The security of the dispute-mediation
process does not rely on atomicity. Instead, it requires trusting the mediator. How do mediators
become trustworthy? There could be a variety of ways, but an obvious one is reputation. Unlike
atomicity, which is a technological security-enhancing mechanism, reputations are built up over time
through inherently social mechanisms.

Reputation has a role to play in the absence of technological solutions or as a complement to them.
However, it is not without drawbacks. Reputations are tied to identities, and if identities are not static
or binding, reputation doesn’t work well. For example, if a restaurant receives terrible reviews online
and decides to close and reopen under the same management but a new name, its bad reputation is
reset. In an anonymous environment, reputations cannot work at all, and in a pseudonymous
environment where identities can be switched effortlessly, reputation-based systems face significant
challenges. Reputation systems also struggle to validate the “he said / she said” assertions that impact
one’s reputation. In traditional systems like Yelp, business operate under their real names, and so do
users to some extent. However, in a pseudonymous environment, it could be infeasible to sensibly
sort out spurious accusations from facts.

There are other security mechanisms including secure hardware that we won’t elaborate on.
Regardless of the mechanism used, ultimately there is a big security challenge because there is no
real-world enforcement. There are no punitive measures for misbehavior and disputes cannot end up
in court, especially if no one is using real-world identities. Offering debts is infeasible, as there is no
enforcement to ensure that they will be repaid, and so transactions often require deposits, which lock
up funds for the dispute period.
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Sidebar: trust. Some people in the Bitcoin community use terms such as “trust minimization” or
“trustlessness” as a goal. This might sound backwards --- don’t we want systems that we can trust
to operate correctly?

The word trust has different meanings which might cause this confusion. When Alice lends Bob ten
dollars and says she trusts him, she means that she thinks he’s a trustworthy person, and that she
has confidence that he’ll pay her back. In the security context, a trusted component is one that
you're forced to be reliant on. When people use the word trusted to describe Certification
Authorities, they mean that online security guarantees would be void if such authorities
misbehaved.

“Trust minimization” is a worthwhile goal in the sense that other things being equal, we want to
build systems with fewer components that we’re reliant on for security. But when you have a
hammer, everything looks like a nail, and Bitcoin enthusiasts often get carried away with removing
trusted components from systems. A trusted component is not always bad, and the existence of a
real-world trust relationship is certainly not a problem by itself. Removing trusted components
might also have other non-obvious drawbacks.

WEe’'ll elaborate on these points in the final section, but for now, having noted the complexity of the
word trust, we’ll seek to avoid it and instead talk about security, a less ambiguous word.

The Framework

To summarize this chapter up this point, we can characterize proposals for decentralizing a wide
variety of things by asking four questions:

What is being decentralized?

What is the level of decentralization?
What block chain is deployed?

What security mechanism does it use?

P wbnpE

With answers to these four questions, we can succinctly represent almost any of the proposals that
we see in the Bitcoin community for block-chain-based decentralization. Let’s consider a few
examples.

Example: Smart Property

What is being decentralized? Property ownership and trading
What is the level of decentralization? Disintermediation

What block chain is deployed? Bitcoin’s block chain

What security mechanism does it use? Atomicity

PwnNPRE
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Smart property, as we’ve seen, decentralizes the notion of property ownership and transfers of
ownership. It achieves complete disintermediation — it eliminates the need for entities like the DMV
or the state. We saw how to realize it using Bitcoin’s block chain, but you could certainly use an
alternative block chain. And finally, the key security principle that we used was atomicity in tying
together the payment with the transfer of the car ownership.

Example: Decentralized Prediction Markets

What is being decentralized? Prediction market

What is the level of decentralization? Competition, disintermediation
What block chain is deployed? Altcoin

What security mechanism does it use? Reputation, atomicity

P wnNPe

In a centralized prediction market, the centralized platform or exchange performs at least two crucial
services: arbitrating the outcome of each event being wagered on, and selling shares to participants
(or facilitating participants to securely trade with each other). The decentralized prediction market
that we saw in Chapter 9 does away with the need for a central authority for both of these features. It
allows anyone to create a market for an event and be its arbiter by sending a simple transaction,
lowering the barrier to entry for performing this function. Thus, intermediaries still exist, but users a
free to choose from a set of competing intermediaries, and if the user is still unhappy, they can always
perform this function themselves. On the other hand, users directly trade shares with each other
atomically, so this function of the central authority has been disintermediated. Decentralized
prediction markets require new functionality not present in Bitcoin itself, and are thus naturally
implemented through a customized altcoin with its own block chain.

Example: Stor)

What is being decentralized? File storage and retrieval
What is the level of decentralization? Competition

What block chain is deployed? Bitcoin

What security mechanism does it use? Reputation

PwnPR

Storl is a proposal by Greg Maxwell for file storage and retrieval. It has evolved over time, but we’ll
discuss a simple version of it. At a high level, Stor) deploys an “agent” that lives in the cloud and is
programmed to make certain decisions on its own. For example, it can rent cloud computation and
storage to give itself computational resources. Another feature it provides to users is the ability to
store a file for a certain period of time, say 24 hours, in exchange for payment in Bitcoin. It will keep
hosting the file as long it keeps receiving payment. Beyond simple storage, it can do a number of
interesting things we will not consider here. Within our framework, StorJ decentralizes file storage
and retrieval, which are the core features of centralized services like Dropbox. The agent is an
intermediary; it doesn’t matter for our purposes that it is automated. However, there can be

302



competition among intermediaries. Payment is done with Bitcoin, but there is no atomic link between
the agent performing its services and the payments it receives, so security is a matter of the agent’s
reputation.

Example: Zerocoin

What is being decentralized? Mixing of coins
What is the level of decentralization? Disintermediation
What block chain is deployed? Altcoin

What security mechanism does it use? Atomicity

P wnpe

Zerocoin, which we discussed in Chapter 6, is effectively a method for decentralizing the mixing coins
to achieve anonymity. Instead of using a centralized mixing service, Zerocoin realizes a cryptographic
protocol that is functionally equivalent to using a mix but uses no intermediaries at all — only math
and consensus. The relatively heavy cryptography needed in Zerocoin (and its successor, Zerocash)
means that a separate block chain is the far more feasible route. As for the security mechanism, recall
that the notion of burning a basecoin and getting a zerocoin in exchange for it are atomically coupled
through the same transaction; and similarly for later redeeming a zerocoin. This is an example of
atomicity.

11.4 When is Decentralization a Good Idea?

In this chapter so far, we have focused on the technical challenges of achieving decentralization. Now
we’re going to delve into questions of motivation. These questions are non-technical but often they’re
just as difficult to answer: Is decentralization a good idea? Is it economically feasible? What are the
social consequences to decentralization?

Until now, we have used the term decentralization as a technical concept without being explicit about
the fact that it is politically charged. When we talk about replacing traditional systems fully or partly
with technological alternatives, we are really talking about redistributing power from well-established
legal, social and financial institutions. Thus the idea of decentralization stems from Bitcoin’s roots in
the cypherpunk movement — a movement begun by nonconformists dreaming of cryptography’s
ability to empower individual autonomy. With the block chain, this ideal appear closer than ever. But
is this ideal feasible or desirable?

Returning to our running example, there are two problems that the traditional institutions try to solve
for car owners. The first is enforcing ownership, or essentially, preventing theft. The second is
ensuring secure exchanges, or preventing someone from being ripped off during a sale. So to analyze
how smart property fares compared to the existing system, we have to look at not just how efficient
things are when everything goes right, but also, crucially, how bad things can get when something
goes wrong.
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The challenge of real-world security

Defending against any form of theft — cars, art, money, etc. — is an exercise of prevention, detection
and correction. Preventive security mechanisms try to stop theft before it happens, while detection
mechanisms ensure theft is perceived so potential corrective measures can be taken to revert the
damages of the theft and to punish the perpetrator (which could also serve as a deterrent to
committing theft). Car locks and alarms are preventive mechanisms, while GPS tracing units (such as
Lolack) can assist in detecting the theft and enabling law enforcement to recover the stolen car. The
key insight is the car lock is just one small piece of deterrence to car theft — one piece of a large,
intricate system involving police, insurance companies, courts, etc. If you lived in a lawless
environment, a car lock by itself wouldn’t be much of a deterrent to theft. Leaving your car locked on
the street would ensure that it would be quickly stolen.

The model we have seen for smart property relies heavily on preventive mechanisms. We were able
to achieve decentralization only because we equated possession with ownership — owning a car is
essentially equivalent to knowing the private key corresponding to a designated transaction on a
block chain. But this control mechanism is a poor replacement for our current mosaic of institutional
support, as we’ll explain.

If we reduce ownership to the problem of securing private keys, it raises the stakes for digital security,
which is a difficult problem with humans being a weak link. Programmers have endeavored to write
bug-free code for decades, but the challenge remains elusive. Designers of cryptosystems have tried
for decades to get non-technical users to utilize and manage private keys in a way that resists both
theft and accidental loss of keys, also with little progress. If the model of decentralization relies
excessively on private keys, cars might get stolen by malware or in phishing attacks, and the loss of a
key might turn your car into a giant brick. While there could be fallback mechanisms to cover these
types of events, inevitably such mechanisms tend to lead us back toward intermediaries and
centralized systems, chipping away at the benefits of the decentralized model that we were striving
for.

Another area of property transfers that is fundamentally human-oriented is dealing with disputes that
might arise over the terms of sale or other aspects of the transfer. If the real world, if the participants
cannot reach a resolution, the issue will end up in court where a judge will methodically examine each
bit of evidence, testimony, and written words to reach a nuanced ruling about the validity of the sale.
It is tempting, particularly for technical people, to think of the law as a set of logical rules or
algorithms that can produce a clear-cut ruling. However the reality of the legal system is that not only
are laws and contracts verbose, they are ultimately subject to human interpretation and discretion,
which is further removed from the notion of clear-cut logical rules. This is not a weakness. It allows
resolving situations that are far more complex than what was anticipated by the individuals writing
the law.
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To drive home the mismatch between the security properties we get from the decentralized model
and the security properties that we actually want, let’s revisit the earlier example of decentralized
crowd-funding. We saw a technical mechanism to ensure an entrepreneur cannot cash out on
investments until the contributions sum to some pre-specified amount. However, this by no means
prevents an entrepreneur who has successfully raised the funds from absconding with the money! In
fact, even with the current centralized model, there have been numerous alleged scams on
crowd-funding sites, resulting in several lawsuits. In a model where entrepreneurs are potentially
anonymous and there is no deterrent effect from the threat of being sued, this problem is likely to be
far worse. It is hard to imagine that there could be a technical solution to this problem. This is another
case where the technology is only solving a small part of the problem, and frankly, not even the
interesting part of the problem.

To recap, the interesting problems with smart property seem to be social problems, issues that arise
when something goes wrong. Technology can ensure a very efficient transaction when all parties are
satisfied, but it is not well-positioned to solve thorny disputes.

The pros and cons of smart property

As argued, smart property has difficulty decentralizing the aspects of a system that traditionally
require human intervention. In fact, automation may even make it more difficult by not composing
well with mediation and other processes if they are layered on after the fact. Finally, it may create
new categories of problems, such as requiring software security in addition to physical security in the
case of a car.

These examples are, to a certain extent, cartoon versions of what a thorough proposal for smart
property might look like. Many proposals in the Bitcoin community are more nuanced, but even in our
simple setting, we can discern the advantages and disadvantages of smart property.

The main advantage of smart property is the efficiency of ownership transfer, which can be done from
anywhere at any time. For sales of items less valuable than a car, maybe a smartphone or computer,
disputes are unlikely to end up in court, and so nothing is lost in that regard. For such items, atomic
transactions are a useful security feature.

Smart property through block chains also provide greater privacy, and even anonymity. While we’ve
argued that it complicates dispute resolution, privacy is also beneficial in a society where consumer
data is used by companies in ways that are unseen and likely unintended by making the purchases. In
some cases, it might be important for the parties to a transaction to not disclose their identities,
which is not feasible in a centralized intermediated model.

Finally, the decentralized model allows mediators to be chosen. Even if we are content with the legal
system, often disputes are mediated by private companies like Visa or PayPal behind closed doors
using a method that is hard to scrutinize. By using an alternative model where such mediation is
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opened up to competition, we can potentially bring more transparency and public oversight to the
process.

Crypto, the state, and the big opportunity

There is a striking parallel between the emergence of the modern state and the goals of the
technology we have discussed in this chapter. In scaling society up from tribes and small groups,
governments have had to confront precisely the problem of enabling secure commerce and other
interactions between strangers. The methods may be very different but the goal is a shared one.

While a maximalist vision for decentralization might involve dismantling the state, this is not really
viable vision, especially when others who share our democracy want one. However, decentralization
through technology is not necessary in opposition to the state at all. In fact, they can be mutually
beneficial. For example, assuming well-identified parties, transfers of smart property can use the
block chain for efficient transfers and still use the court system if there is a dispute. We think the big
opportunity for block-chain technology is implementing decentralization in a way that complement
the functions of the state, rather than seeking to replace them.

It is tempting to think that things will get decentralized simply because the technology exists. But in
practice, there needs to be a compelling economic reason, such as government regulation that is
particularly onerous or inefficient, or a power imbalance that could lead to abuse. As one illustration
of this, people in various African countries have adopted cell phone minutes as an ad-hoc currency
that is outside of state control and less subject to abuses of power.

To summarize, we’ve shown the technical blueprint for decentralization in this chapter, and also
critically examined the motivations behind decentralization. We encourage you to look for compelling
use cases of decentralization, in particular ones that integrate into existing legal and regulatory
practices.
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Conclusion to the book

Some people are excited about Bitcoin because of the underlying technology. Others are excited
about its commercial possibilities, and yet others about its social and political implications.
Reasonable people can disagree about the latter two, but we hope this book has convinced you that
technologically, Bitcoin is deep, novel, interesting, and based on sound principles. Beyond Bitcoin
there is a fascinating world of alternative cryptocurrency designs that we’re just starting to explore,
some of which might one day be more important than Bitcoin itself.

We got into Bitcoin because we believe in the power of its technology, and we think it’s deeply
connected to the rest of computer science. While we’ve highlighted how seemingly amazing new
technology can struggle to displace established institutions, we believe that in the long run, people
will continue to find new commercially and socially useful things to do with cryptocurrency
technology. Even if your interest is primarily commercial, you’d do well to master the underlying
technology — understanding its power and limitations will help you better weather the market’s hype
cycles.

We'll end with a few words about where to go from here. One of the best things about
decentralization is that it’s a great platform for experimentation and learning. Anyone can download
and analyze Bitcoin’s block chain, or build their own applications on top of it; we hope you’ll take
advantage of these opportunities.

We've created a number of online materials that complement this text. Our Coursera course contains
video lectures that mirror the contents of this book. It also has quizzes and a series of programming
assignments. Taking the course will also give you access to the forums where you’ll find a community
of like-minded learners.

While the first draft of this book is complete, it is a work in progress. We're watching developments in
areas such as Ethereum, and whenever a body of scientific knowledge develops around a new area,
we will release additional chapters. Check our course website!
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